ARTICLE 90 Introduction

90.1 Scope.

(A) Covered. This standard addresses those electrical safety requirements for employee workplaces that are necessary for the practical safeguarding of employees in their pursuit of gainful employment. This standard covers the installation of electric conductors, electric equipment, signaling and communications conductors and equipment, and raceways for the following:

1. Public and private premises, including buildings, structures, mobile homes, recreational vehicles, and floating buildings

2. Yards, lots, parking lots, carnivals, and industrial substations

FPN: For additional information concerning such installations in an industrial or multibuilding complex, see ANSI C2-2002, National Electrical Safety Code.

3. Installations of conductors and equipment that connect to the supply of electricity

4. Installations used by the electric utility, such as office buildings, warehouses, garages, machine shops, and recreational buildings, that are not an integral part of a generating plant, substation, or control center

(B) Not Covered. This standard does not cover the following:

1. Installations in ships, watercraft other than floating buildings, railway rolling stock, aircraft, or automotive vehicles other than mobile homes and recreational vehicles

2. Installations underground in mines and self-propelled mobile surface mining machinery and its attendant electrical trailing cable

3. Installations of railways for generation, transformation, transmission, or distribution of power used exclusively for operation of rolling stock or installations used exclusively for signaling and communications purposes

4. Installations of communications equipment under the exclusive control of communications utilities located outdoors or in building spaces used exclusively for such installations

5. Installations under the exclusive control of an electric utility where such installations:

 a. Consist of service drops or service laterals, and associated metering, or

 b. Are located in legally established easements, rights-of-way, or by other agreements either designated by or recognized by public service commissions, utility commissions, or other regulatory agencies having jurisdiction for such installations, or

 c. Are on property owned or leased by the electric utility for the purpose of communications, metering, generation, control, transformation, transmission, or distribution of electric energy.
90.2 Organization.

This standard is divided into the following four chapters and thirteen annexes:

1. Chapter 1, Safety-Related Work Practices
2. Chapter 2, Safety-Related Maintenance Requirements
3. Chapter 3, Safety Requirements for Special Equipment
4. Chapter 4, Installation Safety Requirements
5. Annex A, Referenced Publications
7. Annex C, Limits of Approach
8. Annex D, Sample Calculation of Flash Protection Boundary
10. Annex F, Hazard/Risk Evaluation Procedure
11. Annex G, Sample Lockout/Tagout Procedure
13. Annex I, Job Briefing and Planning Checklist
15. Annex K, General Categories of Electrical Hazards
17. Annex M, Cross-Reference Tables

Chapter 1 Safety-Related Work Practices

ARTICLE 100 Definitions

Scope. This article contains only those definitions essential to the proper application of this standard. It is not intended to include commonly defined general terms or commonly defined technical terms from related codes and standards. In general, only those terms that are used in two or more articles are defined in Article 100. Other definitions are included in the article in which they are used but may be referenced in Article 100.

Part I of this article contains definitions intended to apply wherever the terms are used throughout this standard. Part II contains definitions applicable only to the parts of articles specifically covering installations and equipment operating at over 600 volts, nominal.

The definitions in this article shall apply wherever the terms are used throughout this standard.

Copyright NFPA
I. General

Accessible (as applied to equipment). Admitting close approach; not guarded by locked doors, elevation, or other effective means.

Accessible (as applied to wiring methods). Capable of being removed or exposed without damaging the building structure or finish or not permanently closed in by the structure or finish of the building.

Accessible, Readily (Readily Accessible). Capable of being reached quickly for operation, renewal, or inspections without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, and so forth.

Ampacity. The current, in amperes, that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.

Appliance. Utilization equipment, generally other than industrial, that is normally built in standardized sizes or types and is installed or connected as a unit to perform one or more functions such as clothes washing, air conditioning, food mixing, deep frying, and so forth.

Approved. Acceptable to the authority having jurisdiction.

Arc Rating. The maximum incident energy resistance demonstrated by a material (or a layered system of materials) prior to breakopen or at the onset of a second-degree skin burn. Arc rating is normally expressed in cal/cm².

FPN: Breakopen is a material response evidenced by the formation of one or more holes in the innermost layer of flame-resistant material that would allow flame to pass through the material.

Armored Cable. A fabricated assembly of insulated conductors in a metallic enclosure.

Attachment Plug (Plug Cap) (Plug). A device that, by insertion in a receptacle, establishes a connection between the conductors of the attached flexible cord and the conductors connected permanently to the receptacle.

Automatic. Self-acting, operating by its own mechanism when actuated by some impersonal influence, as, for example, a change in current, pressure, temperature, or mechanical configuration.

Bare Hand Work. A technique of performing work on live parts, after the employee has been raised to the potential of the live part.

Barricade. A physical obstruction such as tapes, cones, or A-frame-type wood or metal structures intended to provide a warning about and to limit access to a hazardous area.

Barrier. A physical obstruction that is intended to prevent contact with equipment or live parts or to prevent unauthorized access to a work area.

Bathroom. An area including a basin with one or more of the following: a toilet, a tub, or a shower.

Bonding (Bonded). The permanent joining of metallic parts to form an electrically conductive path that ensures electrical continuity and the capacity to conduct safely any current likely to be
imposed.

Bonding Jumper. A reliable conductor to ensure the required electrical conductivity between metal parts required to be electrically connected.

Branch Circuit. The circuit conductors between the final overcurrent device protecting the circuit and the outlet(s).

Building. A structure that stands alone or that is cut off from adjoining structures by fire walls with all openings therein protected by approved fire doors.

Cabinet. An enclosure that is designed for either surface mounting or flush mounting and is provided with a frame, mat, or trim in which a swinging door or doors are or can be hung.

Cablebus. An assembly of insulated conductors with fittings and conductor terminations in a completely enclosed, ventilated protective metal housing. Cablebus is ordinarily assembled at the point of installation from the components furnished or specified by the manufacturer in accordance with instructions for the specific job. This assembly is designed to carry fault current and to withstand the magnetic forces of such current.

Circuit Breaker. A device designed to open and close a circuit by nonautomatic means and to open the circuit automatically on a predetermined overcurrent without damage to itself when properly applied within its rating.

Class I Locations. Class I locations are those in which flammable gases or vapors are or may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. Class I locations shall include those specified in Division 1 or Division 2.

Class I, Division 1. A Class I, Division 1 location is a location:

1. In which ignitible concentrations of flammable gases or vapors can exist under normal operating conditions, or
2. In which ignitible concentrations of such gases or vapors may exist frequently because of repair or maintenance operations or because of leakage, or
3. In which breakdown or faulty operation of equipment or processes might release ignitible concentrations of flammable gases or vapors and might also cause simultaneous failure of electrical equipment in such a way as to directly cause the electrical equipment to become a source of ignition.

FPN No. 1: This classification usually includes the following locations:

1. Where volatile flammable liquids or liquefied flammable gases are transferred from one container to another
2. Interiors of spray booths and areas in the vicinity of spraying and painting operations where volatile flammable solvents are used
3. Locations containing open tanks or vats of volatile flammable liquids
4. Drying rooms or compartments for the evaporation of flammable solvents
5. Locations containing fat- and oil-extraction equipment using volatile flammable solvents
6. Portions of cleaning and dyeing plants where flammable liquids are used
7. Gas generator rooms and other portions of gas manufacturing plants where flammable gas may escape

Copyright NFPA
(8) Inadequately ventilated pump rooms for flammable gas or for volatile flammable liquids

(9) The interiors of refrigerators and freezers in which volatile flammable materials are stored in open, lightly stoppered, or easily ruptured containers

(10) All other locations where ignitable concentrations of flammable vapors or gases are likely to occur in the course of normal operations.

FPN No. 2: In some Division 1 locations, ignitable concentrations of flammable gases or vapors could be present continuously or for long periods of time. Examples include the following:

(1) The inside of inadequately vented enclosures containing instruments normally venting flammable gases or vapors to the interior of the enclosure.

(2) The inside of vented tanks containing volatile flammable liquids.

(3) The area between the inner and outer roof sections of a floating roof tank containing volatile flammable fluids.

(4) Inadequately ventilated areas within spraying or coating operations using volatile flammable fluids.

(5) The interior of an exhaust duct that is used to vent ignitable concentrations of gases or vapors.

Experience has demonstrated the prudence of avoiding the installation of instrumentation or other electric equipment in these particular areas altogether or, where it cannot be avoided because it is essential to the process and other locations are not feasible, using electric equipment or instrumentation approved for the specific application or consisting of intrinsically safe systems.

Class I, Division 2. A Class I, Division 2 location is a location:

(1) In which volatile flammable liquids or flammable gases are handled, processed, or used, but in which the liquids, vapors, or gases will normally be confined within closed containers or closed systems from which they can escape only in case of accidental rupture or breakdown of such containers or systems or in case of abnormal operation of equipment, or

(2) In which ignitable concentrations of gases or vapors are normally prevented by positive mechanical ventilation, and which might become hazardous through failure or abnormal operation of the ventilating equipment, or

(3) That is adjacent to a Class I, Division 1 location, and to which ignitable concentrations of gases or vapors might occasionally be communicated unless such communication is prevented by adequate positive-pressure ventilation from a source of clean air and effective safeguards against ventilation failure are provided.

FPN No. 1: This classification usually includes locations where volatile flammable liquids or flammable gases or vapors are used but that, in the judgment of the authority having jurisdiction, would become hazardous only in case of an accident or of some unusual operating condition. The quantity of flammable material that might escape in case of accident, the adequacy of ventilating equipment, the total area involved, and the record of the industry or business with respect to explosions or fires are all factors that merit consideration in determining the classification and extent of each location.

FPN No. 2: Piping without valves, checks, meters, and similar devices would not ordinarily introduce a hazardous condition even though used for flammable liquids or gases. Depending on factors such as the quantity and size of the containers and ventilation, locations used for the storage of flammable liquids or liquefied or compressed gases in sealed containers may be considered either hazardous (classified) or unclassified locations. See NFPA 30-2000, *Flammable and Combustible Liquids Code*, and NFPA 58-2001, *Liquefied Petroleum Gas Code*.

Class I, Zone 0, 1, and 2 Locations. Class I, Zone 0, 1, and 2 locations are those in which Copyright NFPA
flammable gases or vapors are or may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. Class I, Zone 0, 1, and 2 locations shall include those specified as follows:

Class I, Zone 0. A Class I, Zone 0 location is a location in which

(1) Ignitable concentrations of flammable gases or vapors are present continuously, or

(2) Ignitable concentrations of flammable gases or vapors are present for long periods of time.

FPN No. 1: As a guide in determining when flammable gases or vapors are present continuously or for long periods of time, refer to ANSI/API RP 505-1997, Recommended Practice for Classification of Locations for Electrical Installations of Petroleum Facilities Classified as Class I, Zone 0, Zone 1, or Zone 2; ISA 12.24.01-1998, Recommended Practice for Classification of Locations for Electrical Installations Classified as Class I, Zone 0, Zone 1, or Zone 2; IEC 60079-10-1995, Electrical Apparatus for Explosive Gas Atmospheres, Classifications of Hazardous Areas; and Area Classification Code for Petroleum Installations, Model Code, Part 15, Institute of Petroleum.

FPN No. 2: This classification includes locations inside vented tanks or vessels that contain volatile flammable liquids; inside inadequately vented spraying or coating enclosures, where volatile flammable solvents are used; between the inner and outer roof sections of a floating roof tank containing volatile flammable liquids; inside open vessels, tanks, and pits containing volatile flammable liquids; the interior of an exhaust duct that is used to vent ignitable concentrations of gases or vapors; and inside inadequately ventilated enclosures that contain normally venting instruments utilizing or analyzing flammable fluids and venting to the inside of the enclosures.

FPN No. 3: It is not good practice to install electrical equipment in Zone 0 locations except when the equipment is essential to the process or when other locations are not feasible (see FPN No. 2). If it is necessary to install electrical systems in a Zone 0 location, it is good practice to install intrinsically safe systems.

Class I, Zone 1. A Class I, Zone 1 location is a location

(1) In which ignitable concentrations of flammable gases or vapors are likely to exist under normal operating conditions; or

(2) In which ignitable concentrations of flammable gases or vapors may exist frequently because of repair or maintenance operations or because of leakage; or

(3) In which equipment is operated or processes are carried on, of such a nature that equipment breakdown or faulty operations could result in the release of ignitable concentrations of flammable gases or vapors and also cause simultaneous failure of electrical equipment in a mode to cause the electrical equipment to become a source of ignition; or

(4) That is adjacent to a Class I, Zone 0 location from which ignitable concentrations of vapors could be communicated, unless communication is prevented by adequate positive pressure ventilation from a source of clean air and effective safeguards against ventilation failure are provided.

FPN No. 1: Normal operation is considered the situation when plant equipment is operating within its design parameters. Minor releases of flammable material could be part of normal operations. Minor releases include the releases from mechanical packings on pumps. Failures that involve repair or shutdown (such as the breakdown of pump seals and flange gaskets, and spillage caused by accidents) are not considered normal

Copyright NFPA
operation.

FPN No. 2: This classification usually includes locations where volatile flammable liquids or liquefied flammable gases are transferred from one container to another, in areas in the vicinity of spraying and painting operations where flammable solvents are used; adequately ventilated drying rooms or compartments for evaporation of flammable solvents; adequately ventilated locations containing fat and oil extraction equipment using volatile flammable solvents; portions of cleaning and dyeing plants where volatile flammable liquids are used; adequately ventilated gas generator rooms and other portions of gas manufacturing plants where flammable gas could escape; inadequately ventilated pump rooms for flammable gas or for volatile flammable liquids; the interiors of refrigerators or freezers in which volatile flammable materials are stored in the open, lightly stoppered, or in easily ruptured containers; and other locations where ignitable concentrations of flammable vapors or gases are likely to occur in the course of normal operation but not classified Zone 0.

Class I, Zone 2. A Class I, Zone 2 location is a location

1. In which ignitible concentrations of flammable gases or vapors are not likely to occur in normal operation and, if they do occur, will exist only for a short period; or

2. In which volatile flammable liquids, flammable gases, or flammable vapors are handled, processed, or used but in which the liquids, gases, or vapors normally are confined within closed containers of closed systems from which they can escape, only as a result of accidental rupture or breakdown of the containers or system, or as a result of the abnormal operation of the equipment with which the liquids or gases are handled, processed, or used; or

3. In which ignitible concentrations of flammable gases or vapors normally are prevented by positive mechanical ventilation but which may become hazardous as a result of failure or abnormal operation of the ventilating equipment; or

4. That is adjacent to a Class I, Zone 1 location, from which ignitible concentrations of flammable gases or vapors could be communicated, unless such communication is prevented by adequate positive-pressure ventilation from a source of clean air and effective safeguards against ventilation failure are provided.

FPN: The Zone 2 classification usually includes locations where volatile flammable liquids or flammable gases or vapors are used but which would become hazardous only in case of an accident or of some unusual operating condition.

Class II Locations. Class II locations are those that are hazardous because of the presence of combustible dust. Class II locations shall include those in Division 1 and Division 2.

Class II, Division 1. A Class II, Division 1 location is a location

1. In which combustible dust is in the air under normal operating conditions in quantities sufficient to produce explosive or ignitible mixtures, or

2. Where mechanical failure or abnormal operation of machinery or equipment might cause such explosive or ignitible mixtures to be produced, and might also provide a source of ignition through simultaneous failure of electric equipment, through operation of protection devices, or from other causes, or

3. In which combustible dusts of an electrically conductive nature may be present in hazardous quantities.
FPN: Combustible dusts that are electrically nonconductive include dusts produced in the handling and processing of grain and grain products, pulverized sugar and cocoa, dried egg and milk powders, pulverized spices, starch and pastes, potato and wood-flour, oil meal from beans and seed, dried hay, and other organic materials that could produce combustible dusts when processed or handled. Only Group E dusts are considered to be electrically conductive for classification purposes. Dusts containing magnesium or aluminum are particularly hazardous, and the use of extreme precautions is necessary to avoid ignition and explosion.

Class II, Division 2. A Class II, Division 2 location is a location

(1) Where combustible dust is not normally in the air in quantities sufficient to produce explosive or ignitable mixtures, and dust accumulations are normally insufficient to interfere with the normal operation of electrical equipment or other apparatus, but combustible dust may be in suspension in the air as a result of infrequent malfunctioning of handling or processing equipment, and

(2) Where combustible dust accumulations on, in, or in the vicinity of the electrical equipment may be sufficient to interfere with the safe dissipation of heat from electrical equipment or may be ignitable by abnormal operation or failure of electrical equipment.

FPN No. 1: The quantity of combustible dust that may be present and the adequacy of dust removal systems are factors that merit consideration in determining the classification and may result in an unclassified area.

FPN No. 2: Where products such as seed are handled in a manner that produces low quantities of dust, the amount of dust deposited could not warrant classification.

Class III Locations. Class III locations are those that are hazardous because of the presence of easily ignitable fibers or flyings, but in which such fibers or flyings are not likely to be in suspension in the air in quantities sufficient to produce ignitable mixtures. Class III locations shall include Division 1 and Division 2.

Class III, Division 1. A Class III, Division 1 location is a location in which easily ignitable fibers or materials producing combustible flyings are handled, manufactured, or used.

FPN No. 1: Such locations usually include some parts of rayon, cotton, and other textile mills; combustible fiber manufacturing and processing plants; cotton gins and cotton-seed mills; flax-processing plants; clothing manufacturing plants; woodworking plants; and establishments and industries involving similar hazardous processes or conditions.

FPN No. 2: Easily ignitable fibers or flyings include rayon, cotton (including cotton linters and cotton waste), sisal or henequen, isle, jute, hemp, tow, cocoa fiber, oakum, baled waste kapok, Spanish moss, excelsior, and other materials of similar nature.

Class III, Division 2. A Class III, Division 2 location is a location in which easily ignitable fibers are stored or handled other than in the process of manufacture.

Concealed. Rendered inaccessible by the structure or finish of the building. Wires in concealed raceways are considered concealed, even though they may become accessible by withdrawing them.

Conductive. Suitable for carrying electric current.

Conductor, Bare. A conductor having no covering or electrical insulation whatsoever.

Conductor, Covered. A conductor encased within material of composition or thickness that is not recognized by this standard as electrical insulation.

Copyright NFPA
Conductor, Insulated. A conductor encased within material of composition and thickness that is recognized by this standard as electrical insulation.

Conduit Body. A separate portion of a conduit or tubing system that provides access through a removable cover(s) to the interior of the system at a junction of two or more sections of the system or at a terminal point of the system.

FPN: Boxes such as FS and FD or larger cast or sheet metal boxes are not classified as conduit bodies.

Controller. A device or group of devices that serves to govern, in some predetermined manner, the electric power delivered to the apparatus to which it is connected.

Cooking Unit, Counter-Mounted. A cooking appliance designed for mounting in or on a counter and consisting of one or more heating elements, internal wiring, and built-in or mountable controls.

Cutout Box. An enclosure designed for surface mounting that has swinging doors or covers secured directly to and telescoping with the walls of the box proper.

Dead Front. Without live parts exposed to a person on the operating side of the equipment.

Deenergized. Free from any electrical connection to a source of potential difference and from electrical charge; not having a potential different from that of the earth.

Device. A unit of an electrical system that is intended to carry but not utilize electric energy.

Dielectric Heating. Heating of a nominally insulating material due to its own dielectric losses when the material is placed in a varying electric field.

Disconnecting Means. A device, or group of devices, or other means by which the conductors of a circuit can be disconnected from their source of supply.

Effective Ground-Fault Current Path. An intentionally constructed, permanent, low-impedance electrically conductive path designed and intended to carry current under ground-fault conditions from the point of a ground-fault on a wiring system to the electrical supply source.

Electric Sign. A fixed, stationary, or portable self-contained, electrically illuminated utilization equipment with words or symbols designed to convey information or attract attention.

Electrical Hazard. A dangerous condition such that contact or equipment failure can result in electric shock, arc flash burn, thermal burn, or blast.

FPN: Class 2 power supplies, listed low voltage lighting systems, and similar sources are examples of circuits or systems that are not considered an electrical hazard.

Electrical Safety. Recognizing hazards associated with the use of electrical energy and taking precautions so that hazards do not cause injury or death.

Electrical Single-Line Diagram. A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used in the circuit or system.

Electrically Safe Work Condition. A state in which the conductor or circuit part to be worked on or near has been disconnected from energized parts, locked/tagged in accordance with

Copyright NFPA
established standards, tested to ensure the absence of voltage, and grounded if determined necessary.

Enclosed. Surrounded by a case, housing, fence, or wall(s) that prevents persons from accidentally contacting energized parts.

Enclosure. The case or housing of apparatus, or the fence or walls surrounding an installation to prevent personnel from accidentally contacting energized parts, or to protect the equipment from physical damage.

Energized. Electrically connected to or having a source of voltage.

Equipment. A general term including material, fittings, devices, appliances, luminaires (fixtures), apparatus, and the like used as a part of, or in connection with, an electrical installation.

Explosionproof Apparatus. Apparatus enclosed in a case that is capable of withstanding an explosion of a specified gas or vapor that may occur within it and of preventing the ignition of a specified gas or vapor surrounding the enclosure by sparks, flashes, or explosion of the gas or vapor within, and that operates at such an external temperature that a surrounding flammable atmosphere will not be ignited thereby.

Exposed (as applied to live parts). Capable of being inadvertently touched or approached nearer than a safe distance by a person. It is applied to parts that are not suitably guarded, isolated, or insulated.

Exposed (as applied to wiring methods). On or attached to the surface or behind panels designed to allow access.

Exposed. For the purposes of Article 450, the word *exposed* means that the circuit is in such a position that, in case of failure of supports or insulation, contact with another circuit may result.

Externally Operable. Capable of being operated without exposing the operator to contact with live parts.

Feeder. All circuit conductors between the service equipment, the source of a separately derived system, or other power supply source and the final branch-circuit overcurrent device.

Fitting. An accessory such as a locknut, bushing, or other part of a wiring system that is intended primarily to perform a mechanical rather than an electrical function.

Flame-Resistant (FR). The property of a material whereby combustion is prevented, terminated, or inhibited following the application of a flaming or non-flaming source of ignition, with or without subsequent removal of the ignition source.

FPN: Flame resistance can be an inherent property of a material, or it can be imparted by a specific treatment applied to the material.

Flash Hazard. A dangerous condition associated with the release of energy caused by an electric arc.

Flash Hazard Analysis. A study investigating a worker's potential exposure to arc-flash energy, conducted for the purpose of injury prevention and the determination of safe work.
practices and the appropriate levels of PPE.

Flash Protection Boundary. An approach limit at a distance from exposed live parts within which a person could receive a second degree burn if an electrical arc flash were to occur.

Flash Suit. A complete FR clothing and equipment system that covers the entire body, except for the hands and feet. This includes pants, jacket, and bee-keeper-type hood fitted with a face shield.

Fuse. An overcurrent protective device with a circuit-opening fusible part that is heated and severed by the passage of overcurrent through it.

FPN: A fuse comprises all the parts that form a unit capable of performing the prescribed functions. It may or may not be the complete device necessary to connect it into an electrical circuit.

Ground. A conducting connection, whether intentional or accidental, between an electrical circuit or equipment and the earth or to some conducting body that serves in place of the earth.

Grounded. Connected to earth or to some conducting body that serves in place of the earth.

Grounded Conductor. A system or circuit conductor that is intentionally grounded.

Grounded, Effectively. Intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to prevent the buildup of voltages that may result in undue hazards to connected equipment or to persons.

Grounding Conductor. A conductor used to connect equipment or the grounded circuit of a wiring system to a grounding electrode or electrodes.

Grounding Conductor, Equipment. The conductor used to connect the non–current-carrying metal parts of equipment, raceways, and other enclosures to the system grounded conductor, the grounding electrode conductor, or both, at the service equipment or at the source of a separately derived system.

Grounding Electrode Conductor. The conductor used to connect the grounding electrode(s) to the equipment grounding conductor, to the grounded conductor, or to both, at each service, at each building or structure where supplied from a common service, or at the source of a separately derived system.

Ground Fault. An unintentional, electrically conducting connection between an ungrounded conductor of an electrical circuit and the normally non–current-carrying conductors, metallic enclosures, metallic raceways, metallic equipment, or earth.

Ground-Fault Circuit-Interrupter. A device intended for the protection of personnel that functions to de-energize a circuit or portion thereof within an established period of time when a current to ground exceeds the values established for a Class A device.

FPN: Class A ground-fault circuit-interrupter trips when the current to ground has a value in the range of 4 mA to 6 mA. For further information, see UL 943, Standard for Ground-Fault Circuit Interrupters.

Ground-Fault Current Path. An electrically conductive path from the point of a ground fault on a wiring system through normally non–current-carrying conductors, equipment, or the earth.
to the electrical supply source.

FPN: Examples of ground-fault current paths could consist of any combination of equipment grounding conductors, metallic raceways, metallic cable sheaths, electrical equipment, and any other electrically conductive material such as metal water and gas piping, steel framing members, stucco mesh, metal ducting, reinforcing steel, shields of communications cables, and the earth itself.

Guarded. Covered, shielded, fenced, enclosed, or otherwise protected by means of suitable covers, casings, barriers, rails, screens, mats, or platforms to remove the likelihood of approach or contact by persons or objects to a point of danger.

Health Care Facilities. Buildings or portions of buildings in which medical, dental, psychiatric, nursing, obstetrical, or surgical care is provided. Health care facilities include, but are not limited to, hospitals, nursing homes, limited care facilities, clinics, medical and dental offices, and ambulatory care centers, whether permanent or movable.

Heating Equipment. For the purposes of Article 430, the term includes any equipment used for heating purposes whose heat is generated by induction or dielectric methods.

Hoistway. Any shaftway, hatchway, well hole, or other vertical opening or space in which an elevator or dumbwaiter is designed to operate.

Identified (as applied to equipment). Recognizable as suitable for the specific purpose, function, use, environment, application, and so forth, where described in a particular code or standard requirement.

FPN: Examples of ways to determine suitability of equipment for a specific purpose, environment, or application include investigations by a qualified testing laboratory (listing and labeling), an inspection agency, or other organizations concerned with product evaluation.

Incident Energy. The amount of energy impressed on a surface, a certain distance from the source, generated during an electrical arc event. One of the units used to measure incident energy is calories per centimeter squared (cal/cm²).

Induction Heating. The heating of a nominally conductive material due to its own PR losses when the material is placed in a varying electromagnetic field.

Insulated. Separated from other conducting surfaces by a dielectric (including air space) offering a high resistance to the passage of current.

FPN: When an object is said to be insulated, it is understood to be insulated for the conditions to which it is normally subject. Otherwise, it is, within the purpose of these rules, uninsulated.

Irrigation Machine. An electrically driven or controlled machine, with one or more motors, not hand portable, and used primarily to transport and distribute water for agricultural purposes.

Isolated (as applied to location). Not readily accessible to persons unless special means for access are used.

Labeled. Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Copyright NFPA
Lighting Outlet. An outlet intended for the direct connection of a lampholder, a luminaire (lighting fixture), or a pendant cord terminating in a lampholder.

Limited Approach Boundary. An approach limit at a distance from an exposed live part within which a shock hazard exists.

Listed. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

FPN: The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. Use of the system employed by the listing organization allows the authority having jurisdiction to identify a listed product.

Live Parts. Energized conductive components.

Location, Damp. Locations protected from weather and not subject to saturation with water or other liquids but subject to moderate degrees of moisture. Examples of such locations include partially protected locations under canopies, marquees, roofed open porches, and like locations, and interior locations subject to moderate degrees of moisture, such as some basements, some barns, and some cold-storage warehouses.

Location, Dry. A location not normally subject to dampness or wetness. A location classified as dry may be temporarily subject to dampness and wetness, as in the case of a building under construction.

Location, Wet. Installations under ground or in concrete slabs or masonry in direct contact with the earth; in locations subject to saturation with water or other liquids, such as vehicle washing areas; and in unprotected locations exposed to weather.

Medium Voltage Cable. A single or multiconductor solid dielectric insulated cable rated 2001 volts or higher.

Metal-Clad Cable. A factory assembly of one or more insulated circuit conductors with or without optical fiber members enclosed in an armor of interlocking metal tape, or a smooth or corrugated metallic sheath.

Metal Wireways. Sheet metal troughs with hinged or removable covers for housing and protecting electric wires and cable and in which conductors are laid in place after the wireway has been installed as a complete system.

Mineral-Insulated Metal-Sheathed Cable. A factory assembly of one or more conductors insulated with a highly compressed refractory mineral insulation and enclosed in a liquidtight and gastight continuous copper or alloy steel sheath.

Mobile X-Ray. X-ray equipment mounted on a permanent base with wheels, casters, or a combination of both to facilitate moving the equipment while completely assembled.

Motor Control Center. An assembly of one or more enclosed sections having a common

Copyright NFPA
power bus and principally containing motor control units.

Nonmetallic-Sheathed Cable. A factory assembly of two or more insulated conductors having an outer sheath of nonmetallic material.

Nonmetallic Wireways. Flame-retardant, nonmetallic troughs with removable covers for housing and protecting electric wires and cables in which conductors are laid in place after the wireway has been installed as a complete system.

Open Wiring on Insulators. An exposed wiring method using cleats, knobs, tubes, and flexible tubing for the protection and support of single insulated conductors run in or on buildings.

Outlet. A point on the wiring system at which current is taken to supply utilization equipment.

Outline Lighting. An arrangement of incandescent lamps or electric discharge lighting to outline or call attention to certain features such as the shape of a building or the decoration of a window.

Oven, Wall-Mounted. An oven for cooking purposes and consisting of one or more heating elements, internal wiring, and built-in or separately mountable controls.

Overcurrent. Any current in excess of the rated current of equipment or the ampacity of a conductor. It may result from overload, short circuit, or ground fault.

FPN: A current in excess of rating may be accommodated by certain equipment and conductors for a given set of conditions. Therefore, the rules for overcurrent protection are specific for particular situations.

Overload. Operation of equipment in excess of normal, full-load rating, or of a conductor in excess of rated ampacity that, when it persists for a sufficient length of time, would cause damage or dangerous overheating. A fault, such as a short circuit or ground fault, is not an overload.

Panelboard. A single panel or group of panel units designed for assembly in the form of a single panel, including buses and automatic overcurrent devices, and equipped with or without switches for the control of light, heat, or power circuits; designed to be placed in a cabinet or cutout box placed in or against a wall, partition, or other support; and accessible only from the front.

Power and Control Tray Cable. A factory assembly of two or more insulated conductors, with or without associated bare or covered grounding conductors under a nonmetallic jacket, for installation in cable trays, in raceways, or where supported by a messenger wire.

Power-Limited Tray Cable. Type PLTC nonmetallic-sheathed cable is a factory assembly of two or more insulated conductors under a nonmetallic jacket.

Premises Wiring (System). That interior and exterior wiring, including power, lighting, control, and signal circuit wiring together with all their associated hardware, fittings, and wiring devices, both permanently and temporarily installed, that extends from the service point or source of power, such as a battery, a solar photovoltaic system, or a generator, transformer, or converter windings, to the outlet(s). Such wiring does not include wiring internal to appliances, luminaires (fixtures), motors, controllers, motor control centers, and similar equipment.

Copyright NFPA
Prohibited Approach Boundary. An approach limit at a distance from an exposed live part within which work is considered the same as making contact with the live part.

Qualified Person. One who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training on the hazards involved.

Raceway. An enclosed channel of metal or nonmetallic materials designed expressly for holding wires, cables, or busbars, with additional functions as permitted in this standard. Raceways include, but are not limited to, rigid metal conduit, rigid nonmetallic conduit, intermediate metal conduit, liquidtight flexible conduit, flexible metallic tubing, flexible metal conduit, electrical metallic tubing, electrical nonmetallic tubing, underfloor raceways, cellular concrete floor raceways, cellular metal floor raceways, surface raceways, wireways, and busways.

Receptacle. A receptacle is a contact device installed at the outlet for the connection of an attachment plug. A single receptacle is a single contact device with no other contact device on the same yoke. A multiple receptacle is two or more contact devices on the same yoke.

Receptacle Outlet. An outlet where one or more receptacles are installed.

Restricted Approach Boundary. An approach limit at a distance from an exposed live part within which there is an increased risk of shock, due to electrical arc over combined with inadvertent movement, for personnel working in close proximity to the live part.

Separately Derived System. A premises wiring system whose power is derived from a battery, from a solar photovoltaic system, or from a generator, transformer, or converter windings, and that has no direct electrical connection, including a solidly connected grounded circuit conductor, to supply conductors originating in another system.

Service. The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

Service Cable. Service conductors made up in the form of a cable.

Service Conductors. The conductors from the service point to the service disconnecting means.

Service Drop. The overhead service conductors from the last pole or other aerial support to and including the splices, if any, connecting to the service-entrance conductors at the building or other structure.

Service-Entrance Cable. A single conductor or multiconductor assembly provided with or without an overall covering, primarily used for services, and of the following types:

Type SE. Service-entrance cable having a flame-retardant, moisture-resistant covering.

Type USE. Service-entrance cable, identified for underground use, having a moisture-resistant covering, but not required to have a flame-retardant covering.

Service-Entrance Conductors, Overhead System. The service conductors between the terminals of the service equipment and a point usually outside the building, clear of building Copyright NFPA
walls, where joined by tap or splice to the service drop.

Service-Entrance Conductors. Underground System. The service conductors between the terminals of the service equipment and the point of connection to the service lateral.

FPN: Where service equipment is located outside the building walls, there may be no service-entrance conductors, or they may be entirely outside the building.

Service Equipment. The necessary equipment, usually consisting of a circuit breaker(s) or switch(es) and fuse(s), and their accessories, connected to the load end of service conductors to a building or other structure, or an otherwise designated area, and intended to constitute the main control and cutoff of the supply.

Service Point. The point of connection between the facilities of the serving utility and the premises wiring.

Shock Hazard. A dangerous condition associated with the possible release of energy caused by contact or approach to live parts.

Show Window. Any window used or designed to be used for the display of goods or advertising material, whether it is fully or partly enclosed or entirely open at the rear and whether or not it has a platform raised higher than the street floor level.

Signaling Circuit. Any electric circuit that energizes signaling equipment.

Special Permission. The written consent of the authority having jurisdiction.

Step Potential. A ground potential gradient difference that can cause current flow from foot to foot through the body.

Switch, Isolating. A switch intended for isolating an electric circuit from the source of power. It has no interrupting rating, and it is intended to be operated only after the circuit has been opened by some other means.

Switch, Motor Circuit. A switch rated in horsepower that is capable of interrupting the maximum operating overload current of a motor of the same horsepower rating as the switch at the rated voltage.

Switchboard. A large single panel, frame, or assembly of panels on which are mounted on the face, back, or both, switches, overcurrent and other protective devices, buses, and usually instruments. Switchboards are generally accessible from the rear as well as from the front and are not intended to be installed in cabinets.

Touch Potential. A ground potential gradient difference that can cause current flow from hand to hand or hand to foot through the body.

Unqualified Person. A person who is not a qualified person.

Utilization Equipment. Equipment that utilizes electric energy for electronic, electromechanical, chemical, heating, lighting, or similar purposes.

Ventilated. Provided with a means to permit circulation of air sufficient to remove an excess of heat, fumes, or vapors.

Volatile Flammable Liquid. A flammable liquid having a flash point below 38°C (100°F), or

Copyright NFPA
a flammable liquid whose temperature is above its flash point, or a Class II combustible liquid that has a vapor pressure not exceeding 276 kPa (40 psia) at 38°C (100°F) and whose temperature is above its flash point.

Voltage (of a Circuit). The greatest root-mean-square (rms) (effective) difference of potential between any two conductors of the circuit concerned.

FPN: Some systems, such as 3-phase 4-wire, single-phase 3-wire, and 3-wire direct-current, may have various circuits of various voltages.

Voltage, Nominal. A nominal value assigned to a circuit or system for the purpose of conveniently designating its voltage class (e.g., 120/240 volts, 480Y/277 volts, 600 volts). The actual voltage at which a circuit operates can vary from the nominal within a range that permits satisfactory operation of equipment.

Voltage to Ground. For grounded circuits, the voltage between the given conductor and that point or conductor of the circuit that is grounded; for ungrounded circuits, the greatest voltage between the given conductor and any other conductor of the circuit.

Watertight. Constructed so that moisture will not enter the enclosure under specified test conditions.

Weatherproof. Constructed or protected so that exposure to the weather will not interfere with successful operation.

FPN: Rainproof, raintight, or watertight equipment can fulfill the requirements for weatherproof where varying weather conditions other than wetness, such as snow, ice, dust, or temperature extremes, are not a factor.

Working On (live parts). Coming in contact with live parts with the hands, feet, or other body parts, with tools, probes, or with test equipment, regardless of the personal protective equipment a person is wearing.

II. Over 600 Volts, Nominal

Whereas the preceding definitions are intended to apply wherever the terms are used throughout this standard, the following definitions are applicable only to parts of this standard specifically covering installations and equipment operating at over 600 volts, nominal.

Fuse. An overcurrent protective device with a circuit-opening fusible part that is heated and severed by the passage of overcurrent through it.

FPN: A fuse comprises all the parts that form a unit capable of performing the prescribed functions. It may or may not be the complete device necessary to connect it into an electrical circuit.

Switching Device. A device designed to close, open, or both, one or more electric circuits.

Circuit Breaker. A switching device capable of making, carrying, and interrupting currents under normal circuit conditions, and also making, carrying for a specified time, and interrupting currents under specified abnormal circuit conditions, such as those of short circuit.

Cutout. An assembly of a fuse support with either a fuseholder, fuse carrier, or disconnecting Copyright NFPA
blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade by the inclusion of a nonfusible member.

Disconnecting (or Isolating) Switch (Disconnector. Isolator). A mechanical switching device used for isolating a circuit or equipment from a source of power.

Disconnecting Means. A device, group of devices, or other means whereby the conductors of a circuit can be disconnected from their source of supply.

Interruption Switch. A switch capable of making, carrying, and interrupting specified currents.

ARTICLE 110 General Requirements for Electrical Safety-Related Work Practices

110.1 Scope.

Chapter 1 covers electrical safety-related work practices and procedures for employees who work on or near exposed energized electrical conductors or circuit parts in workplaces that are included in the scope of this standard. Electric circuits and equipment not included in the scope of this standard might present a hazard to employees not qualified to work near such facilities. Requirements have been included in Chapter 1 to protect unqualified employees from such hazards.

110.2 Purpose.

These practices and procedures are intended to provide for employee safety relative to electrical hazards in the workplace.

110.3 Responsibility.

The safety-related work practices contained in Chapter 1 shall be implemented by employees. The employer shall provide the safety-related work practices and shall train the employee who shall then implement them.

110.4 Multiemployer Relationship.

(A) Safe Work Practices. On multiemployer worksites (in all industry sectors), more than one employer may be responsible for hazardous conditions that violate safe work practices.

(B) Outside Personnel (Contractors, etc.). Whenever outside servicing personnel are to be engaged in activities covered by the scope and application of this standard, the on-site employer and the outside employer(s) shall inform each other of existing hazards, personal protective equipment/clothing requirements, safe work practice procedures, and emergency/evacuation procedures applicable to the work to be performed. This coordination shall include a meeting and documentation.

110.5 Organization.

Chapter 1 of this standard is divided into three articles. Article 110 provides general requirements regarding the preparation for, and conduct of, work performed on or near electrical components regardless of whether such components are energized or not. Article 120 emphasizes working deenergized and describes the work practices used to deenergize electrical...
components to put them into an electrically safe work condition before attempting work on or near them. Article 130 provides requirements for working on or near electrical components that have not been placed into an electrically safe work condition.

110.6 Training Requirements.

(A) Safety Training. The training requirements contained in this section shall apply to employees who face a risk of electrical hazard that is not reduced to a safe level by the electrical installation requirements of Chapter 4. Such employees shall be trained to understand the specific hazards associated with electrical energy. They shall be trained in safety-related work practices and procedural requirements as necessary to provide protection from the electrical hazards associated with their respective job or task assignments. Employees shall be trained to identify and understand the relationship between electrical hazards and possible injury.

(B) Type of Training. The training required by this section shall be classroom or on-the-job type, or a combination of the two. The degree of training provided shall be determined by the risk to the employee.

(C) Emergency Procedures. Employees working on or near exposed energized electrical conductors or circuit parts shall be trained in methods of release of victims from contact with exposed energized conductors or circuit parts. Employees shall be regularly instructed in methods of first aid and emergency procedures, such as approved methods of resuscitation, if their duties warrant such training.

(D) Employee Training.

(1) Qualified Person. A qualified person shall be trained and knowledgeable of the construction and operation of equipment or a specific work method and be trained to recognize and avoid the electrical hazards that might be present with respect to that equipment or work method.

 (a) Such persons shall also be familiar with the proper use of the special precautionary techniques, personal protective equipment, including arc-flash, insulating and shielding materials, and insulated tools and test equipment. A person can be considered qualified with respect to certain equipment and methods but still be unqualified for others.

 (b) An employee who is undergoing on-the-job training and who, in the course of such training, has demonstrated an ability to perform duties safely at his or her level of training and who is under the direct supervision of a qualified person shall be considered to be a qualified person for the performance of those duties.

 (c) Such persons permitted to work within the Limited Approach Boundary of exposed live parts operating at 50 volts or more shall, at a minimum, be additionally trained in all of the following:

 (1) The skills and techniques necessary to distinguish exposed energized parts from other parts of electrical equipment

 (2) The skills and techniques necessary to determine the nominal voltage of exposed live parts

Copyright NFPA
(3) The approach distances specified in Table 130.2(C) and the corresponding voltages to which the qualified person will be exposed.

(4) The decision-making process necessary to determine the degree and extent of the hazard and the personal protective equipment and job planning necessary to perform the task safely.

(2) Unqualified Persons. Unqualified persons shall be trained in and be familiar with any of the electrical safety-related practices that might not be addressed specifically by Chapter 1 but are necessary for their safety.

110.7 Electrical Safety Program.

(A) General. The employer shall implement an overall electrical safety program that directs activity appropriate for the voltage, energy level, and circuit conditions.

FPN: Safety-related work practices are just one component of an overall electrical safety program.

(B) Awareness and Self-Discipline. The electrical safety program shall be designed to provide an awareness of the potential electrical hazards to employees who might from time to time work in an environment influenced by the presence of electrical energy. The program shall be developed to provide the required self-discipline for employees who occasionally must perform work on or near exposed energized electrical conductors and circuit parts. The program shall instill safety principles and controls.

(C) Electrical Safety Program Principles. The electrical safety program shall identify the principles upon which it is based.

FPN: For examples of typical electrical safety program principles, see Annex E.

(D) Electrical Safety Program Controls. An electrical safety program shall identify the controls by which it is measured and monitored.

FPN: For examples of typical electrical safety program controls, see Annex E.

(E) Electrical Safety Program Procedures. An electrical safety program shall identify the procedures for working on or near live parts operating at 50 volts or more or where an electrical hazard exists before work is started.

FPN: For an example of a typical electrical safety program procedure, see Annex E.

(F) Hazard/Risk Evaluation Procedure. An electrical safety program shall identify a hazard/risk evaluation procedure to be used before work is started on or near live parts operating at 50 volts or more or where an electrical hazard exists.

FPN: For an example of a hazard risk procedure, see Annex F.

(G) Job Briefing.

(1) General. Before starting each job, the employee in charge shall conduct a job briefing with the employees involved. The briefing shall cover such subjects as hazards associated with the job, work procedures involved, special precautions, energy source controls, and personal protective equipment requirements.

Copyright NFPA
(2) Repetitive or Similar Tasks. If the work or operations to be performed during the work day or shift are repetitive and similar, at least one job briefing shall be conducted before the start of the first job of the day or shift. Additional job briefings shall be held if significant changes that might affect the safety of employees occur during the course of the work.

(3) Routine Work. A brief discussion shall be satisfactory if the work involved is routine and if the employee, by virtue of training and experience, can reasonably be expected to recognize and avoid the hazards involved in the job. A more extensive discussion shall be conducted if either of the following apply:

1. The work is complicated or particularly hazardous.
2. The employee cannot be expected to recognize and avoid the hazards involved in the job.

FPN: For an example of a job briefing form and planning checklist, see Annex I.

110.8 Working On or Near Electrical Conductors or Circuit Parts.

(A) General. Safety-related work practices shall be used to safeguard employees from injury while they are working on or near exposed electric conductors or circuit parts that are or can become energized. The specific safety-related work practice shall be consistent with the nature and extent of the associated electric hazards.

1. Live Parts—Safe Work Condition. Live parts to which an employee might be exposed shall be put into an electrically safe work condition before an employee works on or near them, unless work on energized components can be justified according to 130.1.

2. Live Parts—Unsafe Work Condition. Only qualified persons shall be permitted to work on electrical conductors or circuit parts that have not been put into an electrically safe work condition.

(B) Working On or Near Exposed Electrical Conductors or Circuit Parts that Are or Might Become Energized. Prior to working on or near exposed electrical conductors and circuit parts operating at 50 volts or more, lockout/tagout devices shall be applied in accordance with 120.1, 120.2, and 120.3. If, for reasons indicated in 130.1, lockout/tagout devices cannot be applied, 130.2(A) through 130.2(D)(2) shall apply to the work.

1. Electrical Hazard Analysis. If the live parts operating at 50 volts or more are not placed in an electrically safe work condition, other safety-related work practices shall be used to protect employees who might be exposed to the electrical hazards involved. Such work practices shall protect each employee from arc flash and from contact with live parts operating at 50 volts or more directly with any part of the body or indirectly through some other conductive object. Work practices that are used shall be suitable for the conditions under which the work is to be performed and for the voltage level of the live parts. Appropriate safety-related work practices shall be determined before any person approaches exposed live parts within the Limited Approach Boundary by using both shock hazard analysis and flash hazard analysis.

 a. Shock Hazard Analysis. A shock hazard analysis shall determine the voltage to which personnel will be exposed, boundary requirements, and the personal protective equipment necessary in order to minimize the possibility of electrical shock to personnel.

Copyright NFPA
FPN: See 130.2 for the requirements of conducting a shock hazard analysis.

(b) Flash Hazard Analysis. A flash hazard analysis shall be done in order to protect personnel from the possibility of being injured by an arc flash. The analysis shall determine the Flash Protection Boundary and the personal protective equipment that people within the Flash Protection Boundary shall use.

FPN: See 130.3 for the requirements of conducting a flash hazard analysis.

(2) Energized Electrical Work Permit. If live parts are not placed in an electrically safe work condition (i.e., for the reasons of increased or additional hazards or infeasibility per 130.1), work to be performed shall be considered energized electrical work and shall be performed by written permit only.

FPN: See 130.1(A) for the requirements of an energized electrical work permit.

(3) Unqualified Persons. Unqualified persons shall not be permitted to enter spaces that are required under 400.16 to be accessible to qualified employees only, unless the electric conductors and equipment involved are in an electrically safe work condition.

(4) Safety Interlocks. Only qualified persons following the requirements for working inside the Restricted Approach Boundary as covered by 130.2(C) shall be permitted to defeat or bypass an electrical safety interlock over which the person has sole control, and then only temporarily while the qualified person is working on the equipment. The safety interlock system shall be returned to its operable condition when the work is completed.

110.9 Use of Equipment.

(A) Test Instruments and Equipment.

(1) Rating. Test instruments, equipment, and their accessories shall be rated for circuits and equipment to which they will be connected.

(2) Design. Test instruments, equipment, and their accessories shall be designed for the environment to which they will be exposed, and for the manner in which they will be used.

(3) Visual Inspection. Test instruments and equipment and all associated test leads, cables, power cords, probes, and connectors shall be visually inspected for external defects and damage before the equipment is used on any shift. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item shall be removed from service, and no employee shall use it until repairs and tests necessary to render the equipment safe have been made.

(B) Portable Electric Equipment. This section applies to the use of cord-and-plug-connected equipment, including cord sets (extension cords).

(1) Handling. Portable equipment shall be handled in a manner that will not cause damage. Flexible electric cords connected to equipment shall not be used for raising or lowering the equipment. Flexible cords shall not be fastened with staples or hung in such a fashion as could damage the outer jacket or insulation.

(2) Grounding-type Equipment.

(a) A flexible cord used with grounding-type utilization equipment shall contain an Copyright NFPA
equipment grounding conductor.

(b) Attachment plugs and receptacles shall not be connected or altered in a manner that would interrupt continuity of the equipment grounding conductor at the point where plugs are attached to receptacles. Additionally, these devices shall not be altered to allow the grounding pole of a plug to be inserted into slots intended for connection to the current-carrying conductors.

(c) Adapters that interrupt the continuity of the equipment grounding conductor shall not be used.

(a) Frequency of Inspection. Before use on any shift, portable cord-and-plug-connected equipment shall be visually inspected for external defects (such as loose parts, deformed and missing pins) and for evidence of possible internal damage (such as pinched or crushed outer jacket).

Exception: Cord-and-plug-connected equipment and flexible cord sets (extension cords) that remain connected once they are put in place and are not exposed to damage shall not be required to be visually inspected until they are relocated.

(b) Defective Equipment. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item shall be removed from service, and no employee shall use it until repairs and tests necessary to render the equipment safe have been made.

(c) Proper Mating. When an attachment plug is to be connected to a receptacle, the relationship of the plug and receptacle contacts shall first be checked to ensure that they are of mating configurations.

(d) Conductive Work Locations. Portable electric equipment used in highly conductive work locations (such as those inundated with water or other conductive liquids) or in job locations where employees are likely to contact water or conductive liquids shall be approved for those locations. In job locations where employees are likely to contact or be drenched with water or conductive liquids, ground-fault circuit-interrupter protection for personnel shall also be used.

(4) Connecting Attachment Plugs.

(a) Employees' hands shall not be wet when plugging and unplugging flexible cords and cord-and-plug-connected equipment if energized equipment is involved.

(b) Energized plug and receptacle connections shall be handled only with insulating protective equipment if the condition of the connection could provide a conductive path to the employee's hand (if, for example, a cord connector is wet from being immersed in water).

(c) Locking-type connectors shall be secured after connection.

(C) GFCI Protection Devices. GFCI protection devices shall be tested per manufacturer's instructions.

(D) Overcurrent Protection Modification. Overcurrent protection of circuits and conductors shall not be modified, even on a temporary basis, beyond that permitted by 410.9(A) and
ARTICLE 120 Establishing an Electrically Safe Work Condition

120.1 Process of Achieving an Electrically Safe Work Condition.

An electrically safe work condition shall be achieved when performed in accordance with the procedures of 120.2 and verified by the following process:

1. Determine all possible sources of electrical supply to the specific equipment. Check applicable up-to-date drawings, diagrams, and identification tags.

2. After properly interrupting the load current, open the disconnecting device(s) for each source.

3. Wherever possible, visually verify that all blades of the disconnecting devices are fully open or that drawout-type circuit breakers are withdrawn to the fully disconnected position.

4. Apply lockout/tagout devices in accordance with a documented and established policy.

5. Use an adequately rated voltage detector to test each phase conductor or circuit part to verify they are deenergized. Test each phase conductor or circuit part both phase-to-phase and phase-to-ground. Before and after each test, determine that the voltage detector is operating satisfactorily.

6. Where the possibility of induced voltages or stored electrical energy exists, ground the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that the conductors or circuit parts being deenergized could contact other exposed energized conductors or circuit parts, apply ground connecting devices rated for the available fault duty.

120.2 Working On or Near Deenergized Electrical Conductors or Circuit Parts That Have Lockout/Tagout Devices Applied.

Each employer shall identify, document, and implement lockout/tagout procedures conforming to Article 120 to safeguard employees from exposure to electrical hazards while they are working on or near deenergized electrical conductors or circuit parts that are likely to result in injury from inadvertent or accidental contact or equipment failure. The lockout/tagout procedure shall be appropriate for the experience and training of the employees and conditions as they exist in the workplace.

(A) General. All electrical circuit conductors and circuit parts shall be considered energized until the source(s) of energy is (are) removed, at which time they shall be considered deenergized. All electrical circuit conductors and circuit parts shall not be considered to be in an electrically safe condition until all sources of energy are removed, the disconnecting means is under lockout/tagout, the absence of voltage is verified by an approved voltage testing device, and, where exposure to energized facilities exists, are temporarily grounded. (See 120.1 for the six-step procedure to establish an electrically safe work condition.) Electrical conductors and circuit parts that have been disconnected, but not under lockout/tagout, tested, and grounded (where appropriate) shall not be considered to be in an electrically safe work condition.
condition, and safe work practices appropriate for the circuit voltage and energy level shall be used. Lockout/tagout requirements shall apply to fixed, permanently installed equipment, to temporarily installed equipment, and to portable equipment.

(B) Principles of Lockout/Tagout Execution.

(1) Employee Involvement. Each person who could be exposed directly or indirectly to a source of electrical energy shall be involved in the lockout/tagout process.

FPN: An example of direct exposure is the qualified electrician who works on the motor starter control, the power circuits, or the motor. An example of indirect exposure is the person who works on the coupling between the motor and compressor.

(2) Training. All persons who could be exposed shall be trained to understand the established procedure to control the energy and their responsibility in executing the procedure. New (or reassigned) employees shall be trained (or retrained) to understand the lockout/tagout procedure as related to their new assignment.

(3) Plan. A plan shall be developed on the basis of the existing electrical equipment and system and shall utilize up-to-date diagrammatic drawing representation(s).

(4) Control of Energy. All sources of electrical energy shall be controlled in such a way as to minimize employee exposure to electrical hazards.

(5) Identification. The lockout/tagout device shall be unique and readily identifiable as a lockout/tagout device.

(6) Voltage. Voltage shall be removed and absence of voltage verified.

(7) Coordination. The established electrical lockout/tagout procedure shall be coordinated with all of the employer's procedures associated with lockout/tagout of other energy sources. The lockout/tagout procedure shall be audited for execution and completeness on an annual basis.

(C) Responsibility.

(1) Procedures. The employer shall establish lockout/tagout procedures for the organization, provide training to employees, provide equipment necessary to execute the details of the procedure, audit execution of the procedures to ensure employee understanding/compliance, and audit the procedure for improvement opportunity and completeness.

(2) Form of Control. Three forms of hazardous electrical energy control shall be permitted: individual employee control, simple lockout/tagout, and complex lockout/tagout. [See 120.2(D).] For the individual employee control and the simple lockout/tagout, the qualified person shall be in charge. For the complex lockout/tagout, the person in charge shall have overall responsibility. (See Annex G for a sample lockout/tagout procedure.)

(3) Audit Procedures. An audit shall be conducted at least annually by a qualified person and shall cover at least one lockout/tagout in progress and the procedure details. The audit shall be designed to correct deficiencies in the procedure or in employee understanding.

(D) Hazardous Electrical Energy Control Procedures.

(1) Individual Qualified Employee Control Procedure. The individual qualified employee control procedure shall be permitted when equipment with exposed conductors and circuit parts
is deenergized for minor maintenance, servicing, adjusting, cleaning, inspection, operating conditions, and the like. The work shall be permitted to be performed without the placement of lockout/tagout devices on the disconnecting means, provided the disconnecting means is adjacent to the conductor, circuit parts, and equipment on which the work is performed. the disconnecting means is clearly visible to the individual qualified employee involved in the work. and the work does not extend beyond one shift.

(2) **Simple Lockout/Tagout Procedure.** All lockout/tagout procedures that are not under individual qualified employee control [see 120.2(D)(1)] or complex lockout/tagout [see 120.2(D)(3)] shall be considered to be simple lockout/tagout procedures. All lockout/tagout procedures that involve only a qualified person(s) deenergizing one set of conductors or circuit part source for the sole purpose of performing work on or near electrical equipment shall be considered to be a simple lockout/tagout. Simple lockout/tagout plans shall not be required to be written for each application. Each worker shall be responsible for his or her own lockout/tagout.

(3) **Complex Lockout/Tagout Procedure.**

(a) A complex lockout/tagout plan shall be permitted where one or more of the following exist:

1. Multiple energy sources
2. Multiple crews
3. Multiple crafts
4. Multiple locations
5. Multiple employers
6. Different disconnecting means
7. Particular sequences
8. A job or task that continues for more than one work period

(b) A person shall be in charge of a complex lockout/tagout procedure. Such person shall be a qualified individual who is specifically appointed with overall responsibility to ensure that all energy sources are under lockout/tagout and to account for all persons working on the job/task.

(c) The complex lockout/tagout procedure shall identify the person in charge. In this (these) instance(s), the person in charge shall be permitted to install locks/tags, or direct their installation, on behalf of other employees. The person-in-charge shall be held accountable for safe execution of the complex lockout/tagout. The complex lockout/tagout procedure shall address all the concerns of employees who might be exposed. All complex lockout/tagout procedures shall require a written plan of execution that identifies the person in charge. All complex lockout/tagout plans shall identify the method to account for all persons who might be exposed to electrical hazards in the course of the lockout/tagout.

(4) **Coordination.**

(a) The established electrical lockout/tagout procedure shall be coordinated with all other
employer's procedures for control of exposure to electrical energy sources such that all employer's procedural requirements are adequately addressed on a site basis.

(b) The procedure for control of exposure to electrical hazards shall be coordinated with other procedures for control of other hazardous energy sources such that they are based on similar/identical concepts.

(c) The electrical lockout/tagout procedure shall always include voltage testing requirements where there might be direct exposure to electrical energy hazards.

(d) Electrical lockout/tagout devices shall be permitted to be similar to lockout/tagout devices for control of other hazardous energy sources, such as pneumatic, hydraulic, thermal, and mechanical, provided such devices are used only for control of hazardous energy and for no other purpose.

(5) Training and Retraining. Each employer shall provide training as required to ensure employees' understanding of the lockout/tagout procedure content and their duty in executing such procedures.

(E) Equipment.

(1) Lock Application. Energy isolation devices for machinery or equipment installed after January 2, 1990, shall be capable of accepting a lockout device.

(2) Lockout/Tagout Device. Each employer shall supply, and employees shall use, lockout/tagout devices and equipment necessary to execute the requirements of 120.3(E). Locks and tags used for control of exposure to electrical energy hazards shall be unique, shall be readily identifiable as lockout/tagout devices, and shall be used for no other purpose.

(3) Lockout Device.

(a) A lockout device shall include a lock (either keyed or combination).

(b) The lockout device shall include a method of identifying the individual who installed the lockout device.

(c) A lockout device shall be permitted to be only a lock, provided the lock is readily identifiable as a lockout device, in addition to a means of identifying the person who installed the lock.

(d) Lockout devices shall be attached to prevent operation of the disconnecting means without resorting to undue force or the use of tools.

(e) The tag used in conjunction with a lockout device shall contain a statement prohibiting unauthorized operation of the disconnecting means or unauthorized removal of the device.

(f) Lockout devices shall be suitable for the environment and for the duration of the lockout.

(g) Whether keyed or combination locks are used, the key or combination shall remain in the possession of the individual installing the lock or the person in charge, when provided by the established procedure.

(4) Tagout Device.

(a) A tagout device shall include a tag together with an attachment means.

(b) The tagout device shall be readily identifiable as a tagout device and suitable for
the environment and duration of the tagout.

(c) A tagout device attachment means shall be capable of withstanding at least 224.4 N (50 lb) of force exerted at a right angle to the disconnecting means surface. The tag attachment means shall be nonreusable, attachable by hand, self-locking, and nonreleasable, equal to an all-environmental tolerant nylon cable tie.

(d) Tags shall contain a statement prohibiting unauthorized operation of the disconnecting means or removal of the tag.

Exception to (a), (b), and (c): A "hold card tagging tool" on an overhead conductor in conjunction with a hotline tool to install the tagout device safely on a disconnect that is isolated from the worker(s).

(5) Electrical Circuit Interlocks. Up-to-date diagrammatic drawings shall be consulted to ensure that no electrical circuit interlock operation can result in reenergizing the circuit being worked on.

(6) Control Devices. Locks/tags shall be installed only on circuit disconnecting means. Control devices, such as pushbuttons or selector switches, shall not be used as the primary isolating device.

(F) Procedures. The employer shall maintain a copy of the procedures required by this section and shall make the procedures available to all employees.

(1) Planning. The procedure shall require planning, including 120.2(F)(1)(a) through 120.2(F)(2)(n).

(a) Locating Sources. Up-to-date single-line drawings shall be considered a primary reference source for such information. When up-to-date drawings are not available, the employer shall be responsible for ensuring that an equally effective means of locating sources of energy is employed.

(b) Exposed Persons. The plan shall identify persons who might be exposed to an electrical hazard during the execution of the job or task.

(c) Person In Charge. The plan shall identify the person in charge and his or her responsibility in the lockout/tagout.

(d) Individual Qualified Employee Control. Individual qualified employee control shall be in accordance with 120.2(D)(1).

(e) Simple Lockout/Tagout. Simple lockout/tagout procedure shall be in accordance with 120.2(D)(2).

(f) Complex Lockout/Tagout. Complex lockout/tagout procedure shall be in accordance with 120.2(D)(3).

(2) Elements of Control. The procedure shall identify elements of control.

(a) Deenergizing Equipment (Shutdown). The procedure shall establish the person who performs the switching and where and how to deenergize the load.

(b) Stored Energy. The procedure shall include requirements for releasing stored electric or mechanical energy that might endanger personnel. All capacitors shall be discharged, and high capacitance elements shall also be short-circuited and grounded before the associated equipment is touched or worked on. Springs shall be released or physical restraint shall be

Copyright NFPA
applied when necessary to immobilize mechanical equipment and pneumatic and hydraulic pressure reservoirs. Other sources of stored energy shall be blocked or otherwise relieved.

(c) Disconnecting Means. The procedure shall identify how to verify that the circuit is deenergized (open).

(d) Responsibility. The procedure shall identify the person who is responsible to verify that the lockout/tagout procedure is implemented and who is responsible to ensure that the task is completed prior to removing locks/tags. A mechanism to accomplish lockout/tagout for multiple (complex) jobs/tasks where required, including the person responsible for coordination, shall be included.

(e) Verification. The procedure shall verify that equipment cannot be restarted. The equipment operating controls, such as pushbuttons, selector switches, and electrical interlocks, shall be operated or otherwise shall be verified that the equipment cannot be restarted.

(f) Testing. The procedure shall establish the following:

1. What voltage detector will be used and who will use it to verify proper operation of the voltage detector before and after use.

2. A requirement to define the boundary of the work area.

3. A requirement to test before touching every exposed conductor or circuit part(s) within the defined boundary of the work area.

4. A requirement to retest for absence of voltage when circuit conditions change or when the job location has been left unattended.

5. Where there is no accessible exposed point to take voltage measurements, planning considerations shall include methods of verification.

(g) Grounding. Grounding requirements for the circuit shall be established, including whether the grounds shall be installed for the duration of the task or temporarily are established by the procedure. Grounding needs or requirements shall be permitted to be covered in other work rules and might not be part of the lockout/tagout procedure.

(h) Shift Change. A method shall be identified in the procedure to transfer responsibility for lockout/tagout to another person or person in charge when the job or task extends beyond one shift.

(i) Coordination. The procedure shall establish how coordination is accomplished with other jobs or tasks in progress, including related jobs or tasks at remote locations, including the person responsible for coordination.

(j) Accountability for Personnel. A method shall be identified in the procedure to account for all persons who could be exposed to hazardous energy during the lockout/tagout.

(k) Lockout/Tagout Application. The procedure shall clearly identify when and where lockout applies, in addition to when and where tagout applies, and shall address the following:

1. Lockout shall be defined as installing a lockout device on all sources of hazardous energy such that operation of the disconnecting means is prohibited and forcible removal of the lock is required to operate the disconnect means.

2. Tagout shall be defined as installing a tagout device on all sources of hazardous energy.
such that operation of the disconnect means is prohibited. The tagout device shall be installed in the same position available for the lockout device.

(3) Where it is not possible to attach a lock to existing disconnecting means, the disconnecting means shall not be used as the only means to put the circuit in an electrically safe work condition.

(4) The use of tagout procedures without a lock shall be permitted only in cases where equipment design precludes the installation of a lock on an energy isolation device(s). When tagout is employed, at least one additional safety measure shall be employed. In such cases, the procedure shall clearly establish responsibilities and accountability for each person who might be exposed to electrical hazards.

(1) Removal of Lockout/Tagout Devices. The procedure shall identify the details for removing locks or tags when the installing individual is unavailable. When locks or tags are removed by other than the installer, the employer shall attempt to locate the person prior to removing the lock or tag. When the lock or tag is removed because the installer is unavailable, the installer shall be informed prior to returning to work.

(m) Release for Return to Service. The procedure shall identify steps to be taken when the job or task requiring lockout/tagout is completed. Before electric circuits or equipment are reenergized, appropriate tests and visual inspections shall be conducted to verify that all tools, mechanical restraints and electrical jumpers, shorts, and grounds have been removed, so that the circuits and equipment are in a condition to be safely energized. Where appropriate, the employees responsible for operating the machines or process shall be notified when circuits and equipment are ready to be energized, and such employees shall provide assistance as necessary to safely energize the circuits and equipment. The procedure shall contain a statement requiring the area to be inspected to ensure that nonessential items have been removed. One such step shall ensure that all personnel are clear of exposure to dangerous conditions resulting from reenergizing the service and that blocked mechanical equipment or grounded equipment is cleared and prepared for return to service.

(n) Temporary Release for Testing/Positioning. The procedure shall clearly identify the steps and qualified persons’ responsibilities when the job or task requiring lockout/tagout is to be interrupted temporarily for testing or positioning of equipment; then the steps shall be identical to the steps for return to service. See 110.9 and 130.4 for requirements when using test instruments and equipment.

120.3 Temporary Protective Grounding Equipment.

(A) Placement. Temporary protective grounds shall be placed at such locations and arranged in such a manner as to prevent each employee from being exposed to hazardous differences in electrical potential.

(B) Capacity. Temporary protective grounds shall be capable of conducting the maximum fault current that could flow at the point of grounding for the time necessary to clear the fault.

(D) Impedance. Temporary protective grounds shall have an impedance low enough to cause immediate operation of protective devices in case of accidental energizing of the electric conductors or circuit parts.

ARTICLE 130 Working On or Near Live Parts

130.1 Justification for Work.

Live parts to which an employee might be exposed shall be put into an electrically safe work condition before an employee works on or near them, unless the employer can demonstrate that deenergizing introduces additional or increased hazards or is infeasible due to equipment design or operational limitations. Energized parts that operate at less than 50 volts to ground shall not be not required to be deenergized if there will be no increased exposure to electrical burns or to explosion due to electric arcs.

FPN No. 1: Examples of increased or additional hazards include, but are not limited to, interruption of life support equipment, deactivation of emergency alarm systems, and shutdown of hazardous location ventilation equipment.

FPN No. 2: Examples of work that might be performed on or near exposed energized electrical conductors or circuit parts because of infeasibility due to equipment design or operational limitations include performing diagnostics and testing (e.g., start-up or troubleshooting) of electric circuits that can only be performed with the circuit energized and work on circuits that form an integral part of a continuous process that would otherwise need to be completely shut down in order to permit work on one circuit or piece of equipment.

FPN No. 3: For voltages of less than 50 volts, the decision to deenergize should include consideration of the capacity of the source and any overcurrent protection between the energy source and the worker.

(A) Energized Electrical Work Permit.

(1) Where Required. If live parts are not placed in an electrically safe work condition (i.e., for the reasons of increased or additional hazards or infeasibility per 130.1), work to be performed shall be considered energized electrical work and shall be performed by written permit only.

(2) Elements of Work Permit. The energized electrical work permit shall include, but not be limited to, the following items:

(1) A description of the circuit and equipment to be worked on and their location
(2) Justification for why the work must be performed in an energized condition (130.1)
(3) A description of the safe work practices to be employed [110.8(B)]
(4) Results of the shock hazard analysis [110.8(B)(1)(a)]
(5) Determination of shock protection boundaries [130.2(B) and Table 130.2(C)]
(6) Results of the flash hazard analysis (130.3)
(7) The Flash Protection Boundary [130.3(A)]
(8) The necessary personal protective equipment to safely perform the assigned task [130.3(B), 130.7(C)(9), and Table 130.7(C)(9)(a)]
(9) Means employed to restrict the access of unqualified persons from the work area
Evidence of completion of a job briefing, including a discussion of any job-specific hazards [110.7(G)]

Energized work approval (authorizing or responsible management, safety officer, or owner, etc.) signature(s)

(3) Exemptions to Work Permit. Work performed on or near live parts by qualified persons related to tasks such as testing, troubleshooting, voltage measuring, etc., shall be permitted to be performed without an energized electrical work permit, provided appropriate safe work practices and personal protective equipment in accordance with Chapter 1 are provided and used.

FPN: For an example of an acceptable energized electrical work permit, see Annex J.

130.2 Approach Boundaries to Live Parts.

(A) Shock Hazard Analysis. A shock hazard analysis shall determine the voltage to which personnel will be exposed, boundary requirements, and the personal protective equipment necessary in order to minimize the possibility of electric shock to personnel.

(B) Shock Protection Boundaries. The shock protection boundaries identified as Limited, Restricted, and Prohibited Approach Boundaries are applicable to the situation in which approaching personnel are exposed to live parts. See Table 130.2(C) for the distances associated with various system voltages.

FPN: In certain instances, the Flash Protection Boundary might be a greater distance from the exposed live parts than the Limited Approach Boundary.

(C) Approach to Exposed Live Parts Operating at 50 Volts or More. No qualified person shall approach or take any conductive object closer to exposed live parts operating at 50 volts or more than the Restricted Approach Boundary set forth in Table 130.2(C), unless any of the following apply:

(1) The qualified person is insulated or guarded from the live parts operating at 50 volts or more (insulating gloves or insulating gloves and sleeves are considered insulation only with regard to the energized parts upon which work is being performed), and no uninsulated part of the qualified person's body crosses the Prohibited Approach Boundary set forth in Table 130.2(C).

(2) The live part operating at 50 volts or more is insulated from the qualified person and from any other conductive object at a different potential.

(3) The qualified person is insulated from any other conductive object as during live-line bare-hand work.

| Table 130.2(C) Approach Boundaries to Live Parts for Shock Protection. (All dimensions are distance from live part to employee.) |
|---------------------------------|----------------|---------------|---------------|----------------|
| (1) | (2) | (3) | (4) |
| Limited Approach Boundary² | | | |

Copyright NFPA
<table>
<thead>
<tr>
<th>Nominal System Voltage Range, Phase to Phase</th>
<th>Exposed Movable Conductor</th>
<th>Exposed Fixed Circuit Part</th>
<th>Restricted Approach Boundary(^1); Includes inadvertent Movement Adder</th>
<th>Prohibit Contact</th>
<th>Boun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Avoid</td>
<td>sq</td>
</tr>
<tr>
<td>50 to 300</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.07 m (3 ft 6 in.)</td>
<td>304.8 mm (1 ft 0 in.)</td>
<td>25.4 mm</td>
<td></td>
</tr>
<tr>
<td>301 to 750</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.07 m (3 ft 6 in.)</td>
<td>304.8 mm (1 ft 0 in.)</td>
<td>25.4 mm</td>
<td></td>
</tr>
<tr>
<td>751 to 15 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.53 m (5 ft 0 in.)</td>
<td>660.4 mm (2 ft 2 in.)</td>
<td>177.8 mm</td>
<td></td>
</tr>
<tr>
<td>15.1 kV to 36 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.83 m (6 ft 0 in.)</td>
<td>787.4 mm (2 ft 7 in.)</td>
<td>254 mm</td>
<td></td>
</tr>
<tr>
<td>36.1 kV to 46 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>838.2 mm (2 ft 9 in.)</td>
<td>431.8 mm</td>
<td></td>
</tr>
<tr>
<td>46.1 kV to 72.5 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>965.2 mm (3 ft 2 in.)</td>
<td>635 mm</td>
<td></td>
</tr>
<tr>
<td>72.6 kV to 121 kV</td>
<td>3.25 m (10 ft 8 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>991 mm (3 ft 3 in.)</td>
<td>812.8 mm</td>
<td></td>
</tr>
<tr>
<td>138 kV to 145 kV</td>
<td>3.36 m (11 ft 0 in.)</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.093 m (3 ft 7 in.)</td>
<td>939.8 mm</td>
<td></td>
</tr>
<tr>
<td>161 kV to 169 kV</td>
<td>3.56 m (11 ft 8 in.)</td>
<td>3.56 m (11 ft 8 in.)</td>
<td>1.22 m (4 ft 0 in.)</td>
<td>1.07 m</td>
<td></td>
</tr>
<tr>
<td>230 kV to 242 kV</td>
<td>3.97 m (13 ft 0 in.)</td>
<td>3.97 m (13 ft 0 in.)</td>
<td>1.6 m (5 ft 3 in.)</td>
<td>1.45 m</td>
<td></td>
</tr>
<tr>
<td>345 kV to 362 kV</td>
<td>4.68 m (15 ft 4 in.)</td>
<td>4.68 m (15 ft 4 in.)</td>
<td>2.59 m (8 ft 6 in.)</td>
<td>2.44 m</td>
<td></td>
</tr>
<tr>
<td>500 kV to 550 kV</td>
<td>5.8 m (19 ft 0 in.)</td>
<td>5.8 m (19 ft 0 in.)</td>
<td>3.43 m (11 ft 3 in.)</td>
<td>3.28 m</td>
<td></td>
</tr>
<tr>
<td>765 kV to 800 kV</td>
<td>7.24 m (23 ft 9 in.)</td>
<td>7.24 m (23 ft 9 in.)</td>
<td>4.55 m (14 ft 11 in.)</td>
<td>4.4 m (1</td>
<td></td>
</tr>
</tbody>
</table>

Note: For Flash Protection Boundary, see 130.3(A).
\(^1\)See definition in Article 100 and text in 130.2(D)(2) and Annex C for elaboration.

(D) Approach by Unqualified Persons. Unqualified persons shall not be permitted to enter spaces that are required under 400.16(A) to be accessible to qualified employees only, unless the electric conductors and equipment involved are in an electrically safe work condition.

(1) Working At or Close to the Limited Approach Boundary. Where one or more unqualified persons are working at or close to the Limited Approach Boundary, the designated person in charge of the work space where the electrical hazard exists shall cooperate with the designated person in charge of the unqualified person(s) to ensure that all work can be done safely. This shall include advising the unqualified person(s) of the electrical hazard and warning him or her to stay outside of the Limited Approach Boundary.

(2) Entering the Limited Approach Boundary. Where there is a need for an unqualified person(s) to cross the Limited Approach Boundary, a qualified person shall advise him or her of the possible hazards and continuously escort the unqualified person(s) while inside the Limited Approach Boundary. Under no circumstance shall the escorted unqualified person(s) be permitted to cross the Restricted Approach Boundary.

130.3 Flash Hazard Analysis.

A flash hazard analysis shall be done in order to protect personnel from the possibility of being Copyright NFPA
injured by an arc flash. The analysis shall determine the Flash Protection Boundary and the personal protective equipment that people within the Flash Protection Boundary shall use.

(A) Flash Protection Boundary. For systems that are 600 volts or less, the Flash Protection Boundary shall be 4.0 ft, based on the product of clearing times of 6 cycles (0.1 second) and the available bolted fault current of 50 kA or any combination not exceeding 300 kA cycles (5000 ampere seconds). For clearing times and bolted fault currents other than 300 kA cycles, or under engineering supervision, the Flash Protection Boundary shall alternately be permitted to be calculated in accordance with the following general formula:

\[
L = \left[\frac{2.65 \times MVA_{bf} \times t}{D_c} \right]^k
\]

\[
L = \left[\frac{53 \times MVA \times t}{D_c} \right]^k
\]

where:

- \(D_c\) = distance in feet from an arc source for a second-degree burn
- \(MVA_{bf}\) = bolted fault capacity available at point involved (in mega volt-amps)
- \(MVA\) = capacity rating of transformer (mega volt-amps). For transformers with \(MVA\) ratings below 0.75 MVA, multiply the transformer \(MVA\) rating by 1.25
- \(t\) = time of arc exposure (in seconds)

At voltage levels above 600 volts, the Flash Protection Boundary is the distance at which the incident energy equals 5 J/cm² (1.2 cal/cm²). For situations where fault-clearing time is 0.1 second (or faster), the Flash Protection Boundary is the distance at which the incident energy level equals 6.24 J/cm² (1.5 cal/cm²).

(B) Protective Clothing and Personal Protective Equipment for Application with a Flash Hazard Analysis. Where it has been determined that work will be performed within the Flash Protection Boundary by 130.3(A), the flash hazard analysis shall determine, and the employer shall document, the incident energy exposure of the worker (in calories per square centimeter). The incident energy exposure level shall be based on the working distance of the employee's face and chest areas from a prospective arc source for the specific task to be performed. Flame-resistant (FR) clothing and personal protective equipment (PPE) shall be used by the employee based on the incident energy exposure associated with the specific task. Recognizing that incident energy increases as the distance from the arc flash decreases, additional PPE shall be used for any parts of the body that are closer than the distance at which the incident energy was determined. As an alternative, the PPE requirements of 130.7(C)(9) shall be permitted to be used in lieu of the detailed flash hazard analysis approach described in 130.3(A).

FPN: For information on estimating the incident energy, see Appendix D.

130.4 Test Instruments and Equipment Use.

Only qualified persons shall perform testing work on or near live parts operating at 50 volts or more.

130.5 Work On or Near Uninsulated Overhead Lines.

Copyright NFPA
(A) **Uninsulated and Energized.** Where work is performed in locations containing uninsulated energized overhead lines that are not guarded or isolated, precautions shall be taken to prevent employees from contacting such lines directly with any unguarded parts of their body or indirectly through conductive materials, tools, or equipment. Where the work to be performed is such that contact with uninsulated energized overhead lines is possible, the lines shall be deenergized and visibly grounded at the point of work, or suitably guarded.

(B) **Deenergizing or Guarding.** If the lines are to be deenergized, arrangements shall be made with the person or organization that operates or controls the lines to deenergize them and visibly ground them at the point of work. If arrangements are made to use protective measures, such as guarding, isolating, or insulation, these precautions shall prevent each employee from contacting such lines directly with any part of his or her body or indirectly through conductive materials, tools, or equipment.

(C) **Employer and Employee Responsibility.** The employer and employee shall be responsible for ensuring that guards or protective measures are satisfactory for the conditions. Employees shall comply with established work methods and the use of protective equipment.

(D) **Approach Distances for Unqualified Persons.** When employees without electrical training are working on the ground or in an elevated position near overhead lines, the location shall be such that the employee and the longest conductive object the employee might contact cannot come closer to any unguarded, energized overhead power line than the Limited Approach Boundary. If the voltage on the line exceeds 50 kV, the distance shall be 3.04 m (10 ft) plus 100 mm (4 in.) for every 10 kV over 50 kV.

FPN: Objects that are not insulated for the voltage involved should be considered to be conductive.

(E) **Vehicular and Mechanical Equipment.**

(1) **Elevated Equipment.** Where any vehicle or mechanical equipment structure will be elevated near energized overhead lines, they shall be operated so that the Limited Approach Boundary distance of Table 130.2(C), Column 2, is maintained. However, under any of the following conditions, the clearances shall be permitted to be reduced:

(1) If the vehicle is in transit with its structure lowered, the Limited Approach Boundary to overhead lines in Table 130.2(C), Column 2, shall be permitted to be reduced by 1.83 m (6 ft). If insulated barriers, rated for the voltages involved, are installed and they are not part of an attachment to the vehicle, the clearance shall be permitted to be reduced to the design working dimensions of the insulating barrier.

(2) If the equipment is an aerial lift insulated for the voltage involved, and if the work is performed by a qualified person, the clearance (between the uninsulated portion of the aerial lift and the power line) shall be permitted to be reduced to the Restricted Approach Boundary given in Table 130.2(C), Column 4.

(2) **Equipment Contact.** Employees standing on the ground shall not contact the vehicle or mechanical equipment or any of its attachments, unless either of the following conditions apply:

(1) The employee is using protective equipment rated for the voltage.

Copyright NFPA
(2) The equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the line than permitted in 130.5(E)(1).

(3) Equipment Grounding. If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground near the point of grounding shall not stand at the grounding location whenever there is a possibility of overhead line contact. Additional precautions, such as the use of barricades or insulation, shall be taken to protect employees from hazardous ground potentials (step and touch potential), which can develop within a few feet or more outward from the grounded point.

130.6 Other Precautions for Personnel Activities.

(A) Alertness.

(1) When Hazardous. Employees shall be instructed to be alert at all times when they are working near live parts operating at 50 volts or more and in work situations where unexpected electrical hazards might exist.

(2) When Impaired. Employees shall not knowingly be permitted to work in areas containing live parts operating at 50 volts or more or other electrical hazards while their alertness is recognizably impaired due to illness, fatigue, or other reasons.

(B) Blind Reaching. Employees shall be instructed not to reach blindly into areas that might contain exposed live parts where an electrical hazard exists.

(C) Illumination.

(1) General. Employees shall not enter spaces containing live parts unless illumination is provided that enables the employees to perform the work safely.

(2) Obstructed View of Work Area. Where lack of illumination or an obstruction precludes observation of the work to be performed, employees shall not perform any task near live parts operating at 50 volts or more or where an electrical hazard exists.

(D) Conductive Articles Being Worn. Conductive articles of jewelry and clothing (such as watchbands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, metal headgear, or metal frame glasses) shall not be worn where they present an electrical contact hazard with exposed live parts.

(E) Conductive Materials, Tools, and Equipment Being Handled.

(1) General. Conductive materials, tools, and equipment that are in contact with any part of an employee's body shall be handled in a manner that prevents accidental contact with live parts. Such materials and equipment include, but are not limited to, long conductive objects, such as ducts, pipes and tubes, conductive hose and rope, metal-lined rules and scales, steel tapes, pulling lines, metal scaffold parts, structural members, bull floats, and chains.

(2) Approach to Live Parts. Means shall be employed to ensure that conductive materials approach exposed live parts no closer than that permitted by Table 130.2(C).
(F) Confined or Enclosed Work Spaces. When an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed live parts operating at 50 volts or more or an electrical hazard exists, the employer shall provide, and the employee shall use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with these parts. Doors, hinged panels, and the like shall be secured to prevent their swinging into an employee and causing the employee to contact exposed live parts operating at 50 volts or more or where an electrical hazard exists.

(G) Housekeeping Duties. Where live parts present an electrical contact hazard, employees shall not perform housekeeping duties inside the Limited Approach Boundary where there is a possibility of contact, unless adequate safeguards (such as insulating equipment or barriers) are provided to prevent contact. Electrically conductive cleaning materials (including conductive solids such as steel wool, metalized cloth, and silicone carbide, as well as conductive liquid solutions) shall not be used inside the Limited Approach Boundary unless procedures to prevent electrical contact are followed.

(H) Occasional Use of Flammable Materials. Where flammable materials are present only occasionally, electric equipment capable of igniting them may not be used, unless measures are taken to prevent hazardous conditions from developing. Such materials include, but are not limited to, flammable gases, vapors, or liquids; combustible dust; and ignitable fibers or flyings.

FPN: Electrical installation requirements for locations where flammable materials are present on a regular basis are contained in Article 440.

(I) Anticipating Failure. When there is evidence that electric equipment could fail and injure employees, the electric equipment shall be deenergized unless the employer can demonstrate that deenergizing introduces additional or increased hazards or is infeasible because of equipment design or operational limitation. Until the equipment is deenergized or repaired, employees shall be protected from hazards associated with the impending failure of the equipment.

(J) Routine Opening and Closing of Circuits. Load-rated switches, circuit breakers, or other devices specifically designed as disconnecting means shall be used for the opening, reversing, or closing of circuits under load conditions. Cable connectors not of the load-break type, fuses, terminal lugs, and cable splice connections shall not be permitted to be used for such purposes, except in an emergency.

(K) Reclosing Circuits After Protective Device Operation. After a circuit is deenergized by a circuit protective device, the circuit shall not be manually reenergized until it has been determined that the equipment and circuit can be safely energized. The repetitive manual reclosing of circuit breakers or reenergizing circuits through replaced fuses shall be prohibited. When it is determined from the design of the circuit and the overcurrent devices involved that the automatic operation of a device was caused by an overload rather than a fault condition, examination of the circuit or connected equipment shall not be required before the circuit is reenergized.

130.7 Personal and Other Protective Equipment.

(A) General. Employees working in areas where electrical hazards are present shall be provided with, and shall use, protective equipment that is designed and constructed for the

Copyright NFPA
specific part of the body to be protected and for the work to be performed.

(B) Care of Equipment. Protective equipment shall be maintained in a safe, reliable condition. The protective equipment shall be visually inspected before each use.

FPN: Specific requirements for periodic testing of electrical protective equipment are given in 130.7(C)(8) and 130.7(F).

(C) Personal Protective Equipment.

(1) General. When an employee is working within the Flash Protection Boundary he/she shall wear protective clothing and other personal protective equipment in accordance with 130.3.

(2) Movement and Visibility. When flame-resistant (FR) clothing is worn to protect an employee, it shall cover all ignitable clothing and shall allow for movement and visibility.

(3) Head, Face, Neck, and Chin Protection. Employees shall wear nonconductive head protection wherever there is a danger of head injury from electric shock or burns due to contact with live parts or from flying objects resulting from electrical explosion. Employees shall wear nonconductive protective equipment for the face, neck, and chin whenever there is a danger of injury from exposure to electric arcs or flashes or from flying objects resulting from electrical explosion.

FPN: See 130.7(C)(13)(b) for arc flash protective requirements.

(4) Eye Protection. Employees shall wear protective equipment for the eyes whenever there is danger of injury from electric arcs, flashes, or from flying objects resulting from electrical explosion.

(5) Body Protection. Employees shall wear FR clothing wherever there is possible exposure to an electric arc flash above the threshold incident-energy level for a second-degree burn, 5 J/cm² (1.2 cal/cm²).

Exception: For incident-energy exposures 8.36 J/cm² (2 cal/cm²) and below, employees may wear non-melting clothing described in Hazard/Risk Category 0 in Table 130.7(C)(11).

FPN: Such clothing can be provided as shirt and trousers, or as coveralls, or as a combination of jacket and trousers, or, for increased protection, as coveralls with jacket and trousers. Various weight fabrics are available. Generally, the higher degree of protection is provided by heavier weight fabrics and/or by layering combinations of one or more layers of FR clothing. In some cases one or more layers of FR clothing are worn over flammable, non-melting clothing. Non-melting, flammable clothing, used alone, can provide protection at low incident energy levels of 8.36 J/cm² (2.0 cal/cm²) and below.

(6) Hand and Arm Protection. Employees shall wear rubber insulating gloves where there is danger of hand and arm injury from electric shock due to contact with live parts. Hand and arm protection shall be worn where there is possible exposure to arc flash burn. The apparel described in 130.7(C)(13)(c) shall be required for protection of hands from burns. Arm protection shall be accomplished by apparel described in 130.7(C)(5).

(7) Foot and Leg Protection. Where insulated footwear is used as protection against step and touch potential, dielectric overshoes shall be required. Insulated soles shall not be used as primary electrical protection.

(8) Standards for Personal Protective Equipment. Personal protective equipment shall

Copyright NFPA
conform to the standards given in Table 130.7(C)(8).

FPN: Non-FR or flammable fabrics are not covered by a standard in Table 130.7(C)(8). See 130.7(C)(14)(a), 130.7(C)(14)(b), and 130.7(C)(15).

<table>
<thead>
<tr>
<th>Table 130.7(C)(8) Standards on Protective Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
</tr>
<tr>
<td>Head protection</td>
</tr>
<tr>
<td>Eye and face protection</td>
</tr>
<tr>
<td>Sleeves</td>
</tr>
<tr>
<td>Gloves and sleeves</td>
</tr>
<tr>
<td>Visual inspection</td>
</tr>
<tr>
<td>Rainwear</td>
</tr>
<tr>
<td>Face protective products</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(9) Selection of Personal Protective Equipment.

(a) When Required for Various Tasks. When selected in lieu of the flash hazard analysis of 130.3(A), Table 130.7(C)(9)(a) shall be used to determine the hazard/risk category for a task. The assumed short-circuit current capacities and fault clearing times for various tasks are listed in the text and notes to Table 130.7(C)(9)(a). For tasks not listed, or for power systems with greater than the assumed short-circuit current capacity or with longer than the assumed fault clearing times, a flash hazard analysis shall be required in accordance with 130.3.

FPN No. 1: Both larger and smaller available short-circuit currents could result in higher available arc-flash energies. If the available short-circuit current increaser without a decrease in the opening time of the overcurrent protective device, the arc-flash energy will increase. If the available short-circuit current decreases, resulting in a longer opening time for the overcurrent protective device, arc-flash energies could also increase.

FPN No. 2: Energized parts that operate at less than 50 volts are not required to be de-energized to satisfy an "electrically safe work condition." Consideration should be given to the capacity of the source, any overcurrent protection between the energy source and the worker, and whether the work task related to the source operating at less than 50 volts increases exposure to electrical burns or to explosion from an electric arc.

Table 130.7(C)(9)(a) Hazard/Risk Category Classifications

Copyright NFPA
Table 130.7(C)(9)(a) Hazard/Risk Category Classifications

<table>
<thead>
<tr>
<th>Task (Assumes Equipment Is Energized, and Work Is Done Within the Flash Protection Boundary)</th>
<th>Hazard/ Risk Category</th>
<th>V-rated Gloves</th>
<th>V-rated Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panelboards Rated 240 V and Below — Notes 1 and 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker (CB) or fused switch operation with covers on</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch operation with covers off</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Remove/install CBs or fused switches</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Panelboards or Switchboards Rated >240 V and up to 600 V (with molded case or insulated case circuit breakers) — Notes 1 and 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB or fused switch operation with covers on</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch operation with covers off</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>600 V Class Motor Control Centers (MCCs) — Notes 2 (except as indicated) and 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB or fused switch or starter operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch or starter operation with enclosure doors open</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts >120 V, exposed</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Insertion or removal of individual starter “buckets” from MCC — Note 4</td>
<td>3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>2*</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>2*</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>600 V Class Switchgear (with power circuit breakers or fused switches) — Notes 5 and 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB or fused switch operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch operation with enclosure doors open</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts >120 V, exposed</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors open</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>2*</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Other 600 V Class (277 V through 600 V, nominal) Equipment — Note 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting or small power transformers (600 V, maximum)</td>
<td>2*</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>2*</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>2*</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Copyright NFPA
<table>
<thead>
<tr>
<th>Task (Assumes Equipment Is Energized, and Work Is Done Within the Flash Protection Boundary)</th>
<th>Hazard/Risk Category</th>
<th>V-rated Gloves</th>
<th>V-rated Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>2*</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>2*</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>NEMA E2 (fused contactor) Motor Starters, 2.3 kV Through 7.2 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contactor operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Contactor operation with enclosure doors open</td>
<td>2*</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts > 120 V, exposed</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Insertion or removal (racking) of starters from cubicles, doors open</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Insertion or removal (racking) of starters from cubicles, doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metal Clad Switchgear, 1 kV and Above</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CB or fused switch operation with enclosure doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch operation with enclosure doors open</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts 120 V or below, exposed</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on control circuits with energized parts > 120 V, exposed</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors open</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Application of safety grounds, after voltage test</td>
<td>4</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening voltage transformer or control power transformer compartments</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Equipment 1 kV and Above</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal clad load interrupter switches, fused or unfused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch operation, doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized parts, including voltage testing</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Outdoor disconnect switch operation (hookstick operated)</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Outdoor disconnect switch operation (gang-operated, from grade)</td>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Insulated cable examination, in manhole or other confined space</td>
<td>4</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Insulated cable examination, in open area</td>
<td>2</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Note:

V-rated Gloves are gloves rated and tested for the maximum line-to-line voltage upon which work will be done.

V-rated Tools are tools rated and tested for the maximum line-to-line voltage upon which work will be done.

2* means that a double-layer switching hood and hearing protection are required for this task in addition to the other Hazard/Risk Category 2 requirements of Table 130.7(C)(10).

Y = yes (required)

N = no (not required)

Notes:

1. 25 kA short circuit current available, 0.03 second (2 cycle) fault clearing time.
2. 65 kA short circuit current available, 0.03 second (2 cycle) fault clearing time.

Copyright NFPA
3. For < 10 kA short circuit current available, the hazard/risk category required may be reduced by one number.
4. 65 kA short circuit current available, 0.33 second (20 cycle) fault clearing time.
5. 65 kA short circuit current available, up to 1.0 second (60 cycle) fault clearing time.
6. For < 25 kA short circuit current available, the hazard/risk category required may be reduced by one number.

(10) Protective Clothing and Personal Protective Equipment Matrix. Once the Hazard/Risk Category has been identified, Table 130.7(C)(10) shall be used to determine the required personal protective equipment (PPE) for the task. Table 130.7(C)(10) lists the requirements for protective clothing and other protective equipment based on Hazard/Risk Category numbers 0 through 4. This clothing and equipment shall be used when working on or near energized equipment within the Flash Protection Boundary.

FPN No. 1: See Annex H for a suggested simplified approach to ensure adequate PPE for electrical workers within facilities with large and diverse electrical systems.

FPN No. 2: The PPE requirements of this section are intended to protect a person from arc-flash and shock hazards. While some situations could result in burns to the skin, even with the protection described in Table 130.7(C)(10), burn injury should be reduced and survivable. Due to the explosive effect of some arc events, physical trauma injuries could occur. The PPE requirements of this section do not provide protection against physical trauma other than exposure to the thermal effects of an arc flash.

<table>
<thead>
<tr>
<th>Protective Clothing and Equipment</th>
<th>Protective Systems for Hazard/Risk Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard/Risk Category Number</td>
<td>-1 (Note 3)</td>
</tr>
<tr>
<td>Non-melting (according to ASTM F 1506-00) or Untreated Natural Fiber</td>
<td></td>
</tr>
<tr>
<td>a. T-shirt (short-sleeve)</td>
<td>X</td>
</tr>
<tr>
<td>b. Shirt (long-sleeve)</td>
<td>X</td>
</tr>
<tr>
<td>c. Pants (long)</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>FR Clothing (Note 1)</td>
<td></td>
</tr>
<tr>
<td>a. Long-sleeve shirt</td>
<td>X</td>
</tr>
<tr>
<td>b. Pants</td>
<td>X</td>
</tr>
<tr>
<td>c. Coverall</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>d. Jacket, parka, or rainwear</td>
<td>AN</td>
</tr>
<tr>
<td>FR Protective Equipment</td>
<td></td>
</tr>
<tr>
<td>a. Flash suit jacket (multilayer)</td>
<td></td>
</tr>
<tr>
<td>b. Flash suit pants (multilayer)</td>
<td></td>
</tr>
<tr>
<td>c. Head protection</td>
<td></td>
</tr>
<tr>
<td>1. Hard hat</td>
<td>X</td>
</tr>
<tr>
<td>2. FR hard hat liner</td>
<td>X</td>
</tr>
<tr>
<td>d. Eye protection</td>
<td></td>
</tr>
<tr>
<td>1. Safety glasses</td>
<td>X</td>
</tr>
<tr>
<td>2. Safety goggles</td>
<td>X</td>
</tr>
<tr>
<td>e. Face and head area protection</td>
<td></td>
</tr>
<tr>
<td>1. Arc-rated face shield, or flash suit hood</td>
<td>X</td>
</tr>
</tbody>
</table>

Copyright NFPA
Protective Clothing and Equipment

<table>
<thead>
<tr>
<th>Protective Systems for Hazard/Risk Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard/Risk Category Number</td>
</tr>
<tr>
<td>2. Flash suit hood</td>
</tr>
<tr>
<td>3. Hearing protection (ear canal inserts)</td>
</tr>
<tr>
<td>f. Hand protection</td>
</tr>
<tr>
<td>Leather gloves (Note 2)</td>
</tr>
<tr>
<td>g. Foot protection</td>
</tr>
<tr>
<td>Leather work shoes</td>
</tr>
</tbody>
</table>

AN = As needed
AR = As required
X = Minimum required

Notes:
1. See Table 130.7(C)(11). Arc rating for a garment is expressed in cal/cm².
2. If voltage-rated gloves are required, the leather protectors worn external to the rubber gloves satisfy this requirement.
3. Hazard/Risk Category Number "-1" is only defined if determined by Notes 3 or 6 of Table 130.7(C)(9)(a).
4. Regular weight (minimum 12 oz/yd² fabric weight), untreated, denim cotton blue jeans are acceptable in lieu of FR pants. The FR pants used for Hazard/Risk Category 1 shall have a minimum arc rating of 4.
5. Alternate is to use FR coveralls (minimum arc rating of 4) instead of FR shirt and FR pants.
6. If the FR pants have a minimum arc rating of 8, long pants of non-melting or untreated natural fiber are not required beneath the FR pants.
7. Alternate is to use FR coveralls (minimum arc rating of 4) over non-melting or untreated natural fiber pants and T-shirt.
8. A faceshield with a minimum arc rating of 8, with wrap-around guarding to protect not only the face, but also the forehead, ears, and neck (or, alternatively, a flash suit hood), is required.
9. Alternate is to use two sets of FR coveralls (the inner with a minimum arc rating of 4 and outer coverall with a minimum arc rating of 5) over non-melting or untreated natural fiber clothing, instead of FR coveralls over FR shirt and FR pants over non-melting or untreated natural fiber clothing.

(11) Protective Clothing Characteristics. Table 130.7(C)(11) lists examples of protective clothing systems and typical characteristics including the degree of protection for various clothing. The protective clothing selected for the corresponding hazard/risk category number shall have an arc rating of at least the value listed in the last column of Table 130.7(C)(11).

FPN: The arc rating for a particular clothing system can be obtained from the FR clothing manufacturer.

Table 130.7(C)(11) Protective Clothing Characteristics

<table>
<thead>
<tr>
<th>Hazard/Risk Category</th>
<th>Typical Protective Clothing Systems</th>
<th>Required Minimum Arc Rating of PP [J/cm²(cal/cm²)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Non-melting, flammable materials (i.e., untreated cotton, wool, rayon, or silk, or blends of these materials) with a fabric weight at least 4.5 oz/yd² (1)</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>FR shirt and FR pants or FR coverall (1)</td>
<td>16.74 (4)</td>
</tr>
<tr>
<td>2</td>
<td>Cotton underwear — conventional short sleeve and brief/shorts, plus FR shirt and FR pants (1 or 2)</td>
<td>33.47 (8)</td>
</tr>
<tr>
<td>3</td>
<td>Cotton underwear plus FR shirt and FR pants plus FR coverall, or cotton underwear plus two FR coveralls (2 or 3)</td>
<td>104.6 (25)</td>
</tr>
<tr>
<td>4</td>
<td>Cotton underwear plus FR shirt and FR pants plus multilayer flash suit (3 or more)</td>
<td>167.36 (40)</td>
</tr>
</tbody>
</table>

Copyright NFPA
(12) Factors in Selection of Protective Clothing. Clothing and equipment that provide worker protection from shock and arc flash hazards shall be utilized. Clothing and equipment required for the degree of exposure shall be permitted to be worn alone or integrated with flammable, nonmelting apparel. If FR clothing is required, it shall cover associated parts of the body as well as all flammable apparel while allowing movement and visibility. All personal protective equipment shall be maintained in a sanitary and functionally effective condition. Personal protective equipment items will normally be used in conjunction with one another as a system to provide the appropriate level of protection.

FPN: Protective clothing includes shirts, pants, coveralls, jackets, and parkas worn routinely by workers who, under normal working conditions, are exposed to momentary electric arc and related thermal hazards. Flame-resistant rainwear worn in inclement weather is included in this category of clothing.

(a) Layering. Nonmelting, flammable fiber garments shall be permitted to be used as underlayers in conjunction with FR garments in a layered system for added protection. If nonmelting, flammable fiber garments are used as underlayers, the system arc rating shall be sufficient to prevent breakopen of the innermost FR layer at the expected arc exposure incident energy level to prevent ignition of flammable underlayers.

FPN: A typical layering system might include cotton underwear, a cotton shirt and trouser, and a FR coverall. Specific tasks might call for additional FR layers to achieve the required protection level.

(b) Outer Layers. Garments worn as outer layers over FR clothing, such as jackets or rainwear, shall also be made from FR material.

(c) Underlayers. Meltable fibers such as acetate, nylon, polyester, polypropylene, and spandex shall not be permitted in fabric underlayers (underwear) next to the skin.

Exception: An incidental amount of elastic used on nonmelting fabric underwear or socks shall be permitted.

FPN No. 1: FR garments (e.g., shirts, trousers, and coveralls) worn as underlayers that neither ignite nor melt and drip in the course of an exposure to electric arc and related thermal hazards generally provide a higher system arc rating than nonmelting, flammable fiber underlayers.

FPN No. 2: FR underwear or undergarments used as underlayers generally provide a higher system arc rating than nonmelting, flammable fiber underwear or undergarments used as underlayers.

(d) Coverage. Clothing shall cover potentially exposed areas as completely as possible. Shirt sleeves shall be fastened at the wrists, and shirts and jackets shall be closed at the neck.

(e) Fit. Tight-fitting clothing shall be avoided. Loose-fitting clothing provides additional thermal insulation because of air spaces. FR apparel shall fit properly such that it does not interfere with the work task.

(f) Interference. The garment selected shall result in the least interference with the task but still provide the necessary protection. The work method, location, and task could influence the protective equipment selected.

Copyright NFPA
(13) Arc Flash Protective Equipment.

(a) Flash Suits. Flash suit design shall permit easy and rapid removal by the wearer. The entire flash suit, including the hood's face shield, shall have an arc rating that is suitable for the arc flash exposure. When exterior air is supplied into the hood, the air hoses and pump housing shall be either covered by FR materials or constructed of nonmelting and nonflammable materials.

(b) Face Protection. Face shields shall have an arc rating suitable for the arc flash exposure. Face shields without an arc rating shall not be used. Eye protection (safety glasses or goggles) shall always be worn under face shields or hoods.

FPN: Face shields made with energy-absorbing formulations that can provide higher levels of protection from the radiant energy of an arc flash are available, but these shields are tinted and can reduce visual acuity. Additional illumination of the task area might be necessary when these types of arc protective face shields are used.

(c) Hand Protection. Leather or FR gloves shall be worn where required for arc flash protection. Where insulating rubber gloves are used for shock protection, leather protectors shall be worn over the rubber gloves.

FPN: Insulating rubber gloves and gloves made from layers of flame-resistant material provide hand protection against the arc flash hazard. Heavy-duty leather (e.g., greater than 12 oz/yd²) gloves provide protection suitable up to Hazard/Risk Category 2. The leather protectors worn over insulating rubber gloves provide additional arc flash protection for the hands. During high arc flash exposures leather can shrink and cause a decrease in protection.

(d) Foot Protection. Heavy-duty leather work shoes provide some arc flash protection to the feet and shall be used in all tasks in Hazard/Risk Category 2 and higher.

(14) Clothing Material Characteristics. FR clothing shall meet the requirements described in 130.7(C)(14)(a) through 130.7(C)(15).

FPN: FR materials, such as flame-retardant treated cotton, meta-aramid, para-aramid, and poly-benzimidazole (PBI) fibers, provide thermal protection. These materials can ignite but will not continue to burn after the ignition source is removed. FR fabrics can reduce burn injuries during an arc flash exposure by providing a thermal barrier between the arc flash and the wearer. In aramid and PBI blends, para-aramid adds strength to a fabric to prevent the fabric from breaking open due to the blast shock wave and high thermal energy of the arc.

(a) Melting. Clothing made from flammable synthetic materials that melt at temperatures below 315°C (600°F), such as acetate, nylon, polyester, polypropylene, and spandex, either alone or in blends, shall not be used.

FPN: These materials melt as a result of arc flash exposure conditions, form intimate contact with the skin, and aggravate the burn injury.

Exception: Fiber blends that contain materials that melt, such as acetate, nylon, polyester, polypropylene, and spandex, shall be permitted if such blends in fabrics meet the requirements of ASTM F 1506, Standard Performance Specification for Textile Material for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electric Arc and Related Thermal Hazards, and if such blends in fabrics do not exhibit evidence of a melting and sticking hazard during arc testing according to ASTM F 1959 [see also 130.7(C)(15)].

(b) Flammability. Clothing made from nonmelting flammable natural materials, such as cotton, wool, rayon, or silk, shall be permitted for Hazard/Risk Categories 0 and -1 considered Copyright NFPA
acceptable if it is determined by flash hazard analysis that the exposure level is 8.36 J/cm² (2.0 cal/cm²) or less, and that the fabric will not ignite and continue to burn under the arc exposure hazard conditions to which it will be exposed (using data from tests done in accordance with ASTM F 1958.) See also 130.7(C)(12)(a) for layering requirements.

FPN No. 1: Non-FR cotton, polyester-cotton blends, nylon, nylon-cotton blends, silk, rayon, and wool fabrics are flammable. These fabrics could ignite and continue to burn on the body, resulting in serious burn injuries.

FPN No. 2: Rayon is a cellulose-based (wood pulp) synthetic fiber that is a flammable but nonmelting material.

(15) Clothing Not Permitted. Clothing made from materials that do not meet the requirements of 130.7(C)(14)(a) regarding melting, or made from materials that do not meet the flammability requirements of 130.7(C)(14)(b), shall not be permitted to be worn.

FPN: Some flame-resistant fabrics, such as non-FR modacrylic and nondurable flame-retardant treatments of cotton, are not recommended for industrial electrical or utility applications.

Exception: Non-melting, flammable (non-FR) materials shall be permitted to be used as underlayers to FR clothing, as described in 130.7(C)(14)(a) and also shall be permitted to be used for Hazard/Risk Category 0 and -1 as described in Table 130.7(C)(10).

(16) Care and Maintenance of FR Clothing and FR Flash Suits.

(a) Inspection. FR apparel shall be inspected before each use. Work clothing or flash suits that are contaminated, or damaged to the extent their protective qualities are impaired, shall not be used. Protective items that become contaminated with grease, oil, or flammable liquids or combustible materials shall not be used.

(b) Manufacturer's Instructions. The garment manufacturer's instructions for care and maintenance of FR apparel shall be followed.

(D) Other Protective Equipment.

(1) Insulated Tools and Equipment. Employees shall use insulated tools and/or handling equipment when working inside the Limited Approach Boundary of exposed live parts where tools or handling equipment might make accidental contact. Insulated tools shall be protected from damage to the insulating material.

FPN: See 130.2(B) for working on exposed live parts.

(a) Requirements for Insulated Tools. The following requirements shall apply to insulated tools:

(1) Insulated tools shall be rated for the voltages on which they are used.

(2) Insulated tools shall be designed and constructed for the environment to which they are exposed and the manner in which they are used.

(b) Fuse or Fuse Holding Equipment. Fuse or fuse holder handling equipment, insulated for the circuit voltage, shall be used to remove or install a fuse if the fuse terminals are energized.

(c) Ropes and Handlines. Ropes and handlines used near exposed live parts operating at 50 volts or more, or used where an electrical hazard exists, shall be nonconductive.

(d) Fiberglass-Reinforced Plastic Rods. Fiberglass-reinforced plastic rod and tube

Copyright NFPA

(c) Portable Ladders. Portable ladders shall have nonconductive side rails if they are used where the employee or ladder could contact exposed live parts operating at 50 volts or more or where an electrical hazard exists. Nonconductive ladders shall meet the requirements of ANSI standards for ladders listed in Table 130.7(F).

(f) Protective Shields. Protective shields, protective barriers, or insulating materials shall be used to protect each employee from shock, burns, or other electrically related injuries while that employee is working near live parts that might be accidentally contacted or where dangerous electric heating or arcing might occur. When normally enclosed live parts are exposed for maintenance or repair, they shall be guarded to protect unqualified persons from contact with the live parts.

(g) Rubber Insulating Equipment. Rubber insulating equipment used for protection from accidental contact with live parts shall meet the requirements of the ASTM standards listed in Table 130.7(F).

(h) Voltage Rated Plastic Guard Equipment. Plastic guard equipment for protection of employees from accidental contact with live parts, or for protection of employees or energized equipment or material from contact with ground, shall meet the requirements of the ASTM standards listed in Table 130.7(F).

(i) Physical or Mechanical Barriers. Physical or mechanical (field fabricated) barriers shall be installed no closer than the restricted approach distance given in Table 130.2(C). While the barrier is being installed, the restrictive approach distance specified in Table 130.2(C) shall be maintained, or the live parts shall be placed in an electrically safe work condition.

(E) Alerting Techniques.

(1) Safety Signs and Tags. Safety signs, safety symbols, or accident prevention tags shall be used where necessary to warn employees about electrical hazards that might endanger them. Such signs and tags shall meet the requirements of ANSI Standard Z535 given in Table 130.7(F).

(2) Barricades. Barricades shall be used in conjunction with safety signs where it is necessary to prevent or limit employee access to work areas containing live parts. Conductive barricades shall not be used where it might cause an electrical hazard. Barricades shall be placed no closer than the Limited Approach Boundary given in Table 130.2(C).

(3) Attendants. If signs and barricades do not provide sufficient warning and protection from electrical hazards, an attendant shall be stationed to warn and protect employees. The primary duty and responsibility of an attendant providing manual signaling and alerting shall be to keep unqualified employees outside a work area where the unqualified employee might be exposed to electrical hazards. An attendant shall remain in the area as long as there is a potential for employees to be exposed to the electrical hazards.

(F) Standards for Other Protective Equipment. Other protective equipment required in 130.7(D) shall conform to the standards given in Table 130.7(F).

|Table 130.7(F) Standards on Other Protective Equipment|

Copyright NFPA
<table>
<thead>
<tr>
<th>Subject</th>
<th>Number and Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladders</td>
<td>ANSI A14.1, Safety Requirements for Portable Wood Ladders, 1994</td>
</tr>
<tr>
<td></td>
<td>ANSI A14.3, Safety Requirements for Fixed Ladders, 2002</td>
</tr>
<tr>
<td></td>
<td>ANSI A14.4, Safety Requirements for Job-Made Ladders, 1992</td>
</tr>
<tr>
<td>Safety signs and tags</td>
<td>ANSI Z535, Series of Standards for Safety Signs and Tags, 1998</td>
</tr>
<tr>
<td>Blankets</td>
<td>ASTM D 1048, Standard Specification for Rubber Insulating Blankets, 1999</td>
</tr>
<tr>
<td>Line hoses and covers</td>
<td>ASTM F 478, Standard Specification for In-Service Care of Insulating Line Hose and Cover, Blankets</td>
</tr>
</tbody>
</table>

Copyright NFPA
D.3 Basic Equations for Calculating Flash Protection Boundary Distances.

The short-circuit symmetrical amperage from a bolted 3-phase fault at the transformer terminals is calculated with the following formula:

[D.3(a)]

\[I_s = \left(\frac{\text{MVAs Base} \times 10^3}{V} + 1.732 \times V \right) \times \left(100 + \%Z \right) \]

where \(I_s \) is in amperes, \(V \) is in volts, and \(\%Z \) is based on the transformer \(MVA \).

A typical value for the maximum power (in MW) in a 3-phase arc can be calculated using the following formula:

[D.3(b)]

\[P = \left(\text{maximum bolted fault in MVA}_{bf} \right) \times 0.707^2 \]

The Flash Protection Boundary distance is calculated in accordance with the following formulae:

[D.3(c)]

\[P = 1.732 \times V \times I_s \times 10^{-6} \times 0.707^2 \]

[D.3(d)]

\[D = \left(2.65 \times \text{MVAs} \times t \right)^{\frac{1}{3}} \]

[D.3(e)]

\[D_c = \left(33 \times \text{MVAs} \times t \right)^{\frac{1}{3}} \]

where:

\(D_c \) = distance in feet of person from arc source for a just curable burn (i.e., skin temperature remains less than 80 degrees)

\(\text{MVAs}_{bf} \) = bolted fault \(MVA \) at point involved

\(MVA \) = \(MVA \) rating of transformer. For transformers with \(MVA \) ratings below 0.75 \(MVA \), multiply the transformer \(MVA \) rating by 1.25.

\(t \) = time of arc exposure in seconds

The clearing time for a current limiting fuse is approximately \(\frac{1}{4} \) cycle or 0.004 second. The clearing time of a 5 kV and 15 kV circuit breaker is approximately 0.1 second or 6 cycles. This can be broken down as follows: actual breaker time (approximately 2.0 cycles), plus relay

Copyright NFPA
operating time of approximately 1.74 cycles, plus an additional safety margin of 2 cycles, giving a total time of approximately 6 cycles.

D.5 Sample Calculation.

Many of the electrical characteristics of the systems and equipment are provided in Table D.2. The sample calculation is made on the 4160-volt bus 4A or 4B. Table D.2 tabulates the results of calculating the Flash Protection Boundary for each part of the system. For this calculation, based on Table D.2, the following results are obtained:

1. Calculation is made on a 4160-volt bus.
2. Transformer MVA (and base $MVA = 10$ MVA).
3. Transformer impedance on 10 MVA base = 5.5 percent.
4. Circuit breaker clearing time = 6 cycles.

Using Equation D.3(a), calculate the short-circuit current:

$$I_n = \left(\frac{MVA \text{ Base} \times 10^2}{\left[1.732 \times 1\right]} \right) \times \left[100 + \%Z\right]$$

$$= \left[\frac{10 \times 10^2}{1.732 \times 4160} \right] \times \left[100 + 5.5\right]$$

$$= 25,000 \text{ amperes}$$

Using Equation D.3(b), calculate the power in the arc:

$$P = 1.732 \times 4160 \times 25,000 \times 10^{-6} \times 0.707^2$$

$$= 91 \text{ MW}$$

Using the Equation D.3(d), calculate the second-degree burn distance:

$$D_2 = \left(2.65 \times \left[1.732 \times 25,000 \times 4160 \times 10^{-6}\right] \times 0.1\right)^{\frac{1}{2}}$$

$$= 6.9 \text{ or } 7.00 \text{ ft}$$

Or, using Equation D.3(e), calculate the second-degree burn distance using an alternative method:

$$D_2 = \left[58 \times 10 \times 0.1\right]^{\frac{1}{2}}$$

$$= 7.28 \text{ ft}$$

D.6 Calculation of Incident Energy Exposure for a Flash Hazard Analysis.

The following equations can be used to predict the incident energy produced by a three-phase arc on systems rated 600 volts and below. The results of these equations might not represent the worst case in all situations. It is essential that the equations be used only within the limitations indicated in the definitions of the variables shown under the equations. The equations must be
used only under qualified engineering supervision. (Note: Experimental testing continues to be performed to validate existing incident energy calculations and to determine new formulas.)

The parameters required to make the calculations follow:

(1) The maximum "bolted fault" three-phase short-circuit current available at the equipment and the minimum fault level at which the arc will self-sustain. (Calculations should be made using the maximum value, and then at lowest fault level at which the arc is self-sustaining. For 480-volt systems, the industry accepted minimum level for a sustaining arcing fault is 38 percent of the available "bolted fault" three-phase short-circuit current. The highest incident energy exposure could occur at these lower levels where the overcurrent device could take seconds or minutes to open.)

(2) The total protective device clearing time (upstream of the prospective arc location) at the maximum short-circuit current, and at the minimum fault level at which the arc will sustain itself.

(3) The distance of the worker from the prospective arc for the task to be performed.

D.6.1 Arc in Open Air.

The estimated incident energy for an arc in open air is

[D.6.1(a)]

\[E_{Ma} = 5271D_A^{-1.0076}t_A\left[0.0016F^2 - 0.0076F + 0.8938\right] \]

where:

\(E_{Ma}\) = maximum open arc incident energy, cal/cm²

\(D_A\) = distance from arc electrodes, in. (for distances 18 in. and greater)

\(t_A\) = arc duration, seconds

\(F\) = short-circuit current, kA (for the range of 16 kA to 50 kA)

Using Equation D.6.1(a), calculate the maximum open arc incident energy, cal/cm², where \(D_A\) = 18 in., \(t_A\) = 0.2 second, and \(F\) = 20 kA.

[D.6.1(b)]

\[E_{Ma} = 5271D_A^{-1.0076}t_A\left[0.0016F^2 - 0.0076F + 0.8938\right] \]
\[= 5271 \times 0.0035 \times 0.2\left[0.0016 \times 400 - 0.0076 \times 20 + 0.8938\right] \]
\[= 3.69 \times [1.381] \]
\[= 21.33 \text{ J/cm}^2 (5.098 \text{ cal/cm}^2) \]

D.6.2 Arc in a Cubic Box.

The estimated incident energy for an arc in a cubic box (20 in. on each side, open on one end) is

Copyright NFPA
given in the following equation. This equation is applicable to arc flashes emanating from within switchgear, motor control centers, or other electrical equipment enclosures.

[D.6.2(a)]

\[E_{mb} = 1038.7D_A^{-1.151}t_A \left[0.0093F^2 - 0.3453F + 5.9675 \right] \]

where:
\(E_{MB} \) = maximum 20 in. cubic box incident energy, cal/cm²
\(D_B \) = distance from arc electrodes, inches (for distances 18 in. and greater)
\(t_A \) = arc duration, seconds
\(F \) = short circuit current, kA (for the range of 16 kA to 50 kA)

Sample Calculation: Using Equation D.6.2, calculate the maximum 20 in. cubic box incident energy, cal/cm², using the following:

1. \(D_A = 18 \) in.
2. \(t_A = 0.2 \) second
3. \(F = 20 \) kA

[D.6.2(b)]

\[E_{mb} = 1038.7D_A^{-1.151}t_A \left[0.0093F^2 - 0.3453F + 5.9675 \right] \\
= 1038 \times 0.0141 \times 0.2 \left[0.0093 \times 400 - 0.3453 \times 20 + 5.9675 \right] \\
= 2.928 \times \left[2.7815 \right] \\
= 34.1 \text{ J/cm}^2 \left(8.144 \text{ cal/cm}^2 \right) \]

D.6.3 Reference.

D.8 Basic Equations for Calculating Incident Energy and Flash Protection Boundary.
This section offers equations for estimating incident energy and Flash Protection Boundaries based on statistical analysis and curve fitting of available test data. An IEEE working group produced the data from tests it performed to produce models of incident energy. Based on the selection of standard personal protective equipment (PPE) levels (1.2, 8, 25, and 40 cal/cm²), it is estimated that the PPE is adequate or more than adequate to protect employees from second-degree burns in 95 percent of the cases.

FPN: When incident energy exceeds 40 cal/cm² at the working distance, greater emphasis than normal should

Copyright NFPA
be placed on de-energizing before working on or near the exposed electrical conductors or circuit parts.

The complete data, including a spreadsheet calculator to solve the equations, can be found in the IEEE Guide for Performing Arc Flash Hazard Calculations (IEEE Std 1584™-2002). It can be ordered from the Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY 10016-5997.

D.8.1 System Limits.

An equation for calculating incident energy can be empirically derived using statistical analysis of raw data along with a curve-fitting algorithm. It can be used for systems with the following limits:

1. 0.208 kV to 15 kV, three-phase
2. 50 Hz to 60 Hz
3. 700 A to 106,000 A available short-circuit current
4. 13 mm to 152 mm conductor gaps

For three-phase systems in open-air substations, open-air transmission systems, and distribution systems, a theoretically derived model is available. This theoretically derived model is intended for use with applications where faults escalate to three-phase faults. Where such an escalation is not possible or likely or where single-phase systems are encountered, this equation will likely provide conservative results.

D.8.2 Arcing Current.

To determine the operating time for protective devices, find the predicted three-phase arcing current.

For applications with a system voltage under 1 kV, solve Equation D.8.2(a):

[D.8.2(a)]

\[
\lg I_a = K + 0.662 \lg I_{sy} + 0.0966V + 0.000526G + 0.5588V(\lg I_{sy}) - 0.00304G(\lg I_{sy})
\]

where:

\(\lg\) = the log10

\(I_a\) = arcing current in kA

\(K\) = -0.153 for open air arcs; -0.097 for arcs-in-a-box

\(I_{sy}\) = bolted three-phase available short-circuit current (symmetrical rms) (kA)

\(V\) = system voltage in kV

\(G\) = conductor gap (mm) (See Table D.8.2.)

For systems greater than or equal to 1 kV, use Equation D.8.2(b):

Copyright NFPA
\[\lg I_e = 0.00402 - 0.9853 \lg I_a \]

This higher voltage formula is utilized for both open-air arcs and for arcs-in-a-box.

Convert from \(\lg \):

\[I_e = 10^{I_e} \]

Use \(0.85 I_a \) to find a second arcing time. This second arc current accounts for variations in the arcing current and the time for the overcurrent device to open. Calculate the incident energy using both values \((I_a \text{ and } 0.85 I_a)\), and use the higher value.

<table>
<thead>
<tr>
<th>System Voltage (kV)</th>
<th>Type of Equipment</th>
<th>Typical Conductor Gap (mm)</th>
<th>Distance X-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.208–1</td>
<td>Open-air</td>
<td>10–40</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>32</td>
<td>1.473</td>
</tr>
<tr>
<td></td>
<td>MCCs and panels</td>
<td>25</td>
<td>1.641</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
<tr>
<td>>1–5</td>
<td>Open-air</td>
<td>102</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>13–102</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
<tr>
<td>>5–15</td>
<td>Open-air</td>
<td>13–153</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>153</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
</tbody>
</table>

D.8.3 Incident Energy at Working Distance—Empirically Derived Equation.

To determine the incident energy using the empirically derived equation, determine the \(\log_{10} \) of the normalized incident energy. This equation is based on data normalized for an arc time of 0.2 second and a distance from the possible arc point to the person of 610 mm:

\[\lg E_n = k_1 + k_2 + 1.081 \lg I_e = 0.0014G \]

where:

- \(E_n \) = incident energy \((J/cm^2)\) normalized for time and distance
- \(k_1 = -0.792 \) for open air arcs; \(-0.555 \) for arcs-in-a-box
- \(k_2 = 0 \) for ungrounded and high-resistance grounded systems
 - \(= -0.113 \) for grounded systems

Copyright NFPA
Then,

[D.8.3(b)]

\[F_c = 10^{6+c} \]

Converting from normalized:

[D.8.3(c)]

\[I = 4.184 C_f E_n \left(\frac{f}{0.2} \right)^{\frac{640}{D^3}} \]

where:

- \(E \) = incident energy in J/cm\(^2\)
- \(C_f \) = calculation factor
 - 1.0 for voltages above 1 kV
 - 1.5 for voltages at or below 1 kV
- \(E_n \) = incident energy normalized
- \(t \) = arcing time (seconds)
- \(D \) = distance (mm) from the arc to the person (working distance)
- \(X \) = the distance exponent from Table D.8.2

D.8.4 Incident Energy at Working Distance---Theoretical Equation.

The theoretically derived equation can be applied in cases where the voltage is over 15 kV or the gap is outside the range:

(D.8.4)

\[E = 2.142 \times 10^3 I_{hf} \left(\frac{t}{D^2} \right) \]

where:

- \(E \) = incident energy (J/cm\(^2\))
- \(V \) = system voltage (kV)
- \(t \) = arcing time (seconds)
- \(D \) = distance (mm) from the arc to the person (working distance)
- \(I_{hf} \) = available three-phase bolted-fault current

For voltages over 15 kV, arcing-fault current and bolted-fault current are considered equal.

D.8.5 Flash Protection Boundary.

The Flash Protection Boundary is the distance at which a person is likely to receive a second-degree burn. The onset of a second-degree burn is assumed to be when the skin receives...
5.0 J/cm² of incident energy.

For the empirically derived equation:

\[D_B = \frac{1.184 \ell}{C_j \left(\frac{t}{0.2} \right)^{\frac{1}{2}}} \left(\frac{E_B}{E_n} \right)^{\frac{1}{2}} \]

For the theoretically derived equation:

\[H = \sqrt{\frac{2.412 \times 10^{14} \ell}{C_j \left(\frac{t}{0.2} \right)^{\frac{1}{2}}} \left(\frac{E_B}{E_n} \right)^{\frac{1}{2}}} \]

where:
- \(D_B \) = the distance (mm) of the Flash Protection Boundary from the arcing point
- \(C_j \) = a calculation factor
 - 1.0 for voltages above 1 kV
 - 1.5 for voltages at or below 1 kV
- \(E_n \) = incident energy normalized
- \(E_B \) = incident energy in J/cm² at the distance of the Flash Protection Boundary
- \(t \) = time (seconds)
- \(\ell \) = the distance exponent from Table 10.8.2
- \(I_{bf} \) = bolted three phase available short-circuit current
- \(V \) = system voltage in kV

FPN: These equations could be used to determine whether selected PPE is adequate to prevent thermal injury at a specified distance in event of an arc flash.

D.8.6 Current-Limiting Fuses.

The formulas in this section were developed for calculating arc-flash energies for use with current-limiting Class L and Class RK1 fuses. The testing was done at 600 volts and at a distance of 455 mm, using commercially available fuses from one manufacturer. The following variables are noted:

- \(I_{bf} \) = available three-phase bolted-fault current (symmetrical rms) (kA)
- \(E \) = incident energy (J/cm²)

(A) Class L Fuses 1,601 A–2,000 A.

Where \(I_{bf} < 22.6 \) kA, calculate the arcing current using Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).
Where \(22.6 \text{ kA} < I_{bf} < 65.9 \text{ kA} \).

[D.8.6(a)]

\[
E = 4.184 \{ -0.1281 I_{bf} + 32.262 \}
\]

Where \(65.9 \text{ kA} < I_{bf} \leq 106 \text{ kA} \).

[D.8.6(b)]

\[
E = 4.184 \{ -0.5177 I_{bf} + 57.917 \}
\]

Where \(I_{bf} > 106 \text{ kA} \), contact manufacturer.

(B) Class L Fuses 1,201 A–1,600 A.

Where \(I_{bf} < 15.7 \text{ kA} \), calculate the arcing current using Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).

Where \(15.7 \text{ kA} \leq I_{bf} \leq 31.8 \text{ kA} \).

[D.8.6(c)]

\[
E = 4.184 \{ -0.1863 I_{bf} + 27.926 \}
\]

Where \(31.8 \text{ kA} < I_{bf} < 44.1 \text{ kA} \).

[D.8.6(d)]

\[
E = 4.184 \{ -1.5504 I_{bf} + 71.303 \}
\]

Where \(44.1 \text{ kA} \leq I_{bf} \leq 65.9 \text{ kA} \).

[D.8.6(e)]

\[
E = 12.3 \text{ J/cm}^2 (2.94 \text{ cal/cm}^2)
\]

Where \(65.9 \text{ kA} < I_{bf} \leq 106 \text{ kA} \).

[D.8.6(f)]

\[
E = 4.184 \{ -0.0631 I_{bf} + 7.0878 \}
\]

Where \(I_{bf} > 106 \text{ kA} \), contact manufacturer.

(C) Class L Fuses 801 A–1,200 A.

Copyright NFPA
Where $I_{by} < 15.7$ kA, calculate the arcing current per Equation D.8.2(a), and use time-current curves to determine the incident energy per Equations D.8.3(a), D.8.3(b), and D.8.3(c).

Where 15.7 kA $< I_{by} \leq 22.6$ kA.

[D.8.6(g)]

$$E = 4.181 \left(-0.1928 I_{by} - 14.226 \right)$$

Where 22.6 kA $< I_{by} \leq 44.1$ kA.

[D.8.6(h)]

$$E = 4.181 \left(0.0145 I_{by}^2 - 1.3919 I_{by} + 31.045 \right)$$

Where 44.1 kA $< I_{by} \leq 106$ kA.

[D.8.6(i)]

$$E = 1.63$$

Where $I_{by} > 106$ kA, contact manufacturer.

(D) Class L Fuses 601 A–800 A.

Where $I_{by} < 15.7$ kA, calculate the arcing current per Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).

Where 15.7 kA $\leq I_{by} \leq 44.1$ kA.

[D.8.6(j)]

$$E = 4.181 \left(-0.0601 I_{by} + 2.8992 \right)$$

Where 44.1 kA $< I_{by} \leq 106$ kA.

[D.8.6(k)]

$$E = 1.046$$

Where $I_{by} > 106$ kA, contact manufacturer.

(E) Class RK1 Fuses 401 A–600 A.

Where $I_{by} < 8.5$ kA, calculate the arcing current using Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).

Where 8.5 kA $\leq I_{by} \leq 14$ kA.

Copyright NFPA
\[f = 1.184 \left(-3.0545 I_{bf} - 13.364 \right) \]

Where 14 kA < \(I_{bf} \) ≤ 15.7 kA.

[D.8.6(m)]

\[f = 2.510 \]

Where 15.7 kA < \(I_{bf} \) ≤ 22.6 kA.

[D.8.6(n)]

\[f = 1.184 \left(-0.0507 I_{bf} + 1.3964 \right) \]

Where 22.6 kA < \(I_{bf} \) ≤ 106 kA.

[D.8.6(o)]

\[E = 1.046 \]

Where \(I_{bf} > 106 \) kA, contact manufacturer.

(F) Class RK1 Fuses 201 A–400 A.

Where \(I_{bf} < 3.16 \) kA, calculate the arcing current using Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).

Where 3.16 kA ≤ \(I_{bf} \) ≤ 5.04 kA.

[D.8.6(p)]

\[E = 1.184 \left(-19.053 I_{bf} + 96.808 \right) \]

Where 5.04 kA < \(I_{bf} \) ≤ 22.6 kA.

[D.8.6(q)]

\[E = 1.184 \left(-0.0302 I_{bf} + 0.9321 \right) \]

Where 22.6 kA < \(I_{bf} \) ≤ 106 kA.

[D.8.6(r)]

\[E = 1.046 \]

Copyright NFPA
Where \(I_{bf} > 106 \text{ kA} \), contact manufacturer.

D.8.7 Low-Voltage Circuit Breakers.

The equations in Table D.8.7 can be used for systems with low-voltage circuit breakers. The results of the equations will determine the incident energy and Flash Protection Boundary when \(I_{bf} \) is within the range as described. Time-current curves for the circuit breaker are not necessary within the appropriate range.

When the bolted-fault current is below the range indicated, calculate the arcing current per Equation D.8.2(a), and use time-current curves to determine the incident energy using Equations D.8.3(a), D.8.3(b), and D.8.3(c).

<table>
<thead>
<tr>
<th>Rating (A)</th>
<th>Breaker Type</th>
<th>Trip-Unit Type</th>
<th>480 V and Lower</th>
<th>575–600 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incident Energy</td>
<td>Flash Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(J/cm²)³</td>
<td>(mm)</td>
</tr>
<tr>
<td>100–400</td>
<td>MCCB</td>
<td>TM or M</td>
<td>0.189 (I_{bf} + 0.548)</td>
<td>9.16 (I_{bf} + 194)</td>
</tr>
<tr>
<td>600–1,200</td>
<td>MCCB</td>
<td>TM or M</td>
<td>0.223 (I_{bf} + 1.540)</td>
<td>8.45 (I_{bf} + 364)</td>
</tr>
<tr>
<td>600–1,200</td>
<td>MCCB</td>
<td>E, LI</td>
<td>0.377 (I_{bf} + 1.360)</td>
<td>12.50 (I_{bf} + 428)</td>
</tr>
<tr>
<td>1,600–6,000</td>
<td>MCCB or ICCB</td>
<td>M or E, LI</td>
<td>0.448 (I_{bf} + 3.000)</td>
<td>11.10 (I_{bf} + 696)</td>
</tr>
<tr>
<td>800–5,300</td>
<td>LVPCB</td>
<td>E, LI</td>
<td>0.636 (I_{bf} + 3.670)</td>
<td>14.50 (I_{bf} + 786)</td>
</tr>
<tr>
<td>800–5,300</td>
<td>LVPCB</td>
<td>E, LSb</td>
<td>4.560 (I_{bf} + 27.230)</td>
<td>47.20 (I_{bf} + 2660)</td>
</tr>
</tbody>
</table>

\(^{a}I_{bf}\) is in kA; working distance is 455 mm (18 in.).

\(^{b}\) Short-time delay is assumed to be set at maximum.

MCCB = Molded-case circuit breaker
ICCB = Insulated-case circuit breaker
LVPC = Low-voltage power circuit breaker
TM = Thermal-magnetic trip units
M = Magnetic (instantaneous only) trip units
E = Electronic trip units have three characteristics that may be used separately or in combination: L = Long-time, S = Short-time, I = Instantaneous.

The range of available three-phase bolted-fault currents is from 700 A to 106,000 A. Each equation is applicable for the range

\[I_1 < I_2 < I_3 \]

where:

- \(I_2 \) is the interrupting rating of the CB at the voltage of interest.
- \(I_1 \) is the minimum available three-phase, bolted, short-circuit current at which this method can be applied. \(I_1 \) is the lowest available three-phase, bolted, short-circuit current level that causes enough arcing current for instantaneous tripping to occur or for circuit breakers with

Copyright NFPA
no instantaneous trip, that causes short-time tripping to occur.

To find I_t, the instantaneous trip current of the circuit breaker must be found. This can be determined from the time-current curve, or it can be assumed to be 10 times the rating of the circuit breaker for circuit breakers rated above 100 amperes. For circuit breakers rated 100 amperes and below, a value of $I_t = 1.300$ A can be used. When short-time delay is utilized, I_t is the short-time pick-up current.

The corresponding bolted-fault current, I_{bf}, is found by solving the equation for arc current for box configurations by substituting I_t for arcing current. The 1.3 factor in Equation D.8.7(b) adjusts current to the top of the tripping band.

[D.8.7(a)]

$$\log(1.3I_t) = 0.081 + 0.0996V - 0.586\left(\frac{\log I_{bf}}{0.559V}\right)$$

At 600 V,

[D.8.7(b)]

$$\log I_t = 0.0281 + 1.091\log(1.3I_t)$$

At 480 V and lower,

[D.8.7(c)]

$$\log I_t = 0.9407 + 1.17\log(1.3I_t)$$

[D.8.7(d)]

$$I_{bf} = I_t = 10^{k/t}$$

D.8.8 References.

The complete data, including a spreadsheet calculator to solve the equations, may be found in the IEEE Guide for Performing Arc-Flash Hazard Calculations (IEEE Std 1584™-2002).

IEEE publications are available from the Institute of Electrical and Electronic Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/).

Annex E Electrical Safety Program

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

See 110.7, Electrical Safety Program.

Copyright NFPA
E.1 Typical Electrical Safety Program Principles.

Electrical safety program principles include, but are not limited to, the following:

1. Inspect/evaluate the electrical equipment
2. Maintain the electrical equipment's insulation and enclosure integrity
3. Plan every job and document first-time procedures
4. Deenergize, if possible (see 120.1)
5. Anticipate unexpected events
6. Identify and minimize the hazard
7. Protect the employee from shock, burn, blast, and other hazards due to the working environment
8. Use the right tools for the job
9. Assess people's abilities
10. Audit these principles

E.2 Typical Electrical Safety Program Controls.

Electrical safety program controls can include, but are not limited to, the following:

1. Every electrical conductor or circuit part is considered energized until proven otherwise.
2. No bare-hand contact is to be made with exposed energized electrical conductors or circuit parts above 50 volts to ground, unless the "bare-hand method" is properly used.
3. Deenergizing an electrical conductor or circuit part and making it safe to work on is in itself a potentially hazardous task.
4. Employer develops programs, including training, and employees apply them.
5. Use procedures as "tools" to identify the hazards and develop plans to eliminate/control the hazards.
6. Train employees to qualify them for working in an environment influenced by the presence of electrical energy.
7. Identify/categorize tasks to be performed on or near exposed energized electrical conductors and circuit parts.
8. Use a logical approach to determine potential hazard of task.
9. Identify and use precautions appropriate to the working environment.

E.3 Typical Electrical Safety Program Procedures.

Electrical safety program procedures can include, but are not limited to, the following:

Copyright NFPA
(1) Purpose of task
(2) Qualifications and number of employees to be involved
(3) Hazardous nature and extent of task
(4) Limits of approach
(5) Safe work practices to be utilized
(6) Personal protective equipment involved
(7) Insulating materials and tools involved
(8) Special precautionary techniques
(9) Electrical diagrams
(10) Equipment details
(11) Sketches/pictures of unique features
(12) Reference data

Annex F Hazard/Risk Evaluation Procedure

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

F.1

See 110.7(F), Hazard/Risk Evaluation Procedure. Figure F.1 illustrates the steps of a hazard/risk analysis evaluation procedure flow chart.

Copyright NFPA
Annex G Sample Lockout/Tagout Procedure

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

Lockout is the preferred method of controlling personnel exposure to electrical energy hazards. Tagout is an alternative method that is available to employers. To assist employers in developing a procedure that meets the requirement of 120.3 of NFPA 70E, the following sample procedure is provided for use in lockout or tagout programs. This procedure can be used for an individual employee control, a simple lockout/tagout, or as part of a complex lockout/tagout. Where a job/task is under the control of one person, the individual employee control procedure can be used in lieu of a lockout/tagout procedure. A more comprehensive plan will need to be developed, documented, and utilized for the complex lockout/tagout.

LOCKOUT (TAGOUT) PROCEDURE FOR ABC COMPANY

OR

TAGOUT PROCEDURE FOR ____ COMPANY

1.0 Purpose.

This procedure establishes the minimum requirements for lockout (tagout) of electrical energy sources. It is to be used to ensure that conductors and circuit parts are disconnected from sources of electrical energy, locked (tagged), and tested before work begins where employees could be exposed to dangerous conditions. Sources of stored energy, such as capacitors or springs, shall be relieved of their energy, and a mechanism shall be engaged to prevent the re-accumulation of energy.

2.0 Responsibility.

All employees shall be instructed in the safety significance of the lockout (tagout) procedure. All new or transferred employees and all other persons whose work operations are or might be in the area shall be instructed in the purpose and use of this procedure [include the name(s) of person(s) or job title(s) of employees with responsibility] shall ensure that appropriate personnel receive instructions on their roles and responsibilities. All persons installing a lockout (tagout) device shall sign their names and the date on the tag (or state how the name of the individual or person in charge will be available).

3.0 Preparation for Lockout (Tagout).

3.1

Review current diagrammatic drawings (or other equally effective means), tags, labels, and signs to identify and locate all disconnecting means to determine that power is interrupted by a physical break and not deenergized by a circuit interlock. Make a list of disconnecting means to be locked (tagged).

Copyright NFPA
3.2
Review disconnecting means to determine adequacy of their interrupting ability. Determine if it will be possible to verify a visible open point, or if other precautions will be necessary.

3.3
Review other work activity to identify where and how other personnel might be exposed to sources of electrical energy hazards. Review other energy sources in the physical area to determine employee exposure to sources of other types of energy. Establish energy control methods for control of other hazardous energy sources in the area.

3.4
Provide an adequately rated voltage detector to test each phase conductor or circuit part to verify that they are deenergized. (See 12.3.) Provide a method to determine that the voltage detector is operating satisfactorily.

3.5
Where the possibility of induced voltages or stored electrical energy exists, call for grounding the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that contact with other exposed energized conductors or circuit parts is possible, call for applying ground connecting devices.

4.0 Individual Employee Control Procedure.
The individual employee control procedure can be used when equipment with exposed conductors and circuit parts are deenergized for minor maintenance, servicing, adjusting, cleaning, inspection operating corrections, and the like, and the work shall be permitted to be performed without the placement of lockout/tagout devices on the disconnecting means, provided the disconnecting means is adjacent to the conductor, circuit parts, and equipment on which the work is performed, the disconnecting means is clearly visible to all employees involved in the work, and the work does not extend beyond the work shift.

5.0 Simple Lockout/Tagout.
The simple lockout/tagout procedure will involve paragraphs 1.0 through 3.0, 5.0 through 9.0, and 11.0 through 13.0.

6.0 Sequence of Lockout (Tagout) System Procedures.
6.1
The employees shall be notified that a lockout (tagout) system is going to be implemented and the reason therefore. The qualified employee implementing the lockout (tagout) shall know the disconnecting means location for all sources of electrical energy and the location of all sources of stored energy. The qualified person shall be knowledgeable of hazards associated with electrical energy.

6.2
If the electrical supply is energized, the qualified person shall deenergize and disconnect the
electric supply and relieve all stored energy.

6.3
Lockout (tagout) all disconnecting means with lockout (tagout) devices.

FPN: For tagout, one additional safety measure must be employed, such as opening, blocking, or removing an additional circuit element.

6.4
Attempt to operate the disconnecting means to determine that operation is prohibited.

6.5
A voltage-detecting instrument shall be used. (See 12.3.) Inspect the instrument for visible damage. Do not proceed if there is an indication of damage to the instrument until an undamaged device is available.

6.6
Verify proper instrument operation and then test for absence of voltage.

6.7
Verify proper instrument operation after testing for absence of voltage.

6.8
Where required, install grounding equipment/conductor device on the phase conductors or circuit parts, to eliminate induced voltage or stored energy, before touching them. Where it has been determined that contact with other exposed energized conductors or circuit parts is possible, apply ground connecting devices rated for the available fault duty.

6.9
The equipment and/or electrical source is now locked out (tagged out).

7.0 Restoring the equipment and/or electrical supply to normal condition.

7.1
After the job/task is complete, visually verify that the job/task is complete.

7.2
Remove all tools, equipment, and unused materials and perform appropriate housekeeping.

7.3
Remove all grounding equipment/conductor/devices.

7.4
Notify all personnel involved with the job/task that the lockout (tagout) is complete, that the electrical supply is being restored, and to remain clear of the equipment and electrical supply.

7.5
Copyright NFPA
Perform any quality control tests/checks on the repaired/replaced equipment and/or electrical supply.

7.6

Remove lockout (tagout) devices by the person who installed them.

7.7

Notify the equipment and/or electrical supply owner that the equipment and/or electrical supply is ready to be returned to normal operation.

7.8

Return the disconnecting means to their normal condition.

8.0 Procedure Involving More Than One Person.

For a simple lockout/tagout and where more than one person is involved in the job/task, each person shall install his/her own personal lockout (tagout) device.

9.0 Procedure Involving More Than One Shift.

When the lockout (tagout) extends for more than one day, the lockout (tagout) shall be verified to be still in place at the beginning of the next day. Where the lockout (tagout) is continued on successive shifts, the lockout (tagout) is considered to be a complex lockout (tagout).

For complex lockout (tagout), the person-in-charge shall identify the method for transfer of the lockout (tagout) and of communication with all employees.

10.0 Complex Lockout (Tagout).

A complex lockout/tagout plan is required where one or more of the following exist:

(1) Multiple energy sources (more than one)
(2) Multiple crews
(3) Multiple crafts
(4) Multiple locations
(5) Multiple employers
(6) Unique disconnecting means
(7) Complex or particular switching sequences
(8) Continues for more than one shift, that is, new workers

10.1

All complex lockout/tagout procedures shall require a written plan of execution. The plan will include the requirements in 1.0 through 3.0, 6.0, 7.0, and 9.0 through 13.0.

10.2

A person in charge shall be involved with a complex lockout/tagout procedure. At this location.

Copyright NFPA
shall be the person in charge.

10.3

The person in charge shall develop a written plan of execution and communicate that plan to all persons engaged in the job/task. The person in charge shall be held accountable for safe execution of the complex lockout/tagout plan. The complex lockout/tagout plan must address all the concerns of employees who might be exposed, and they must understand how electrical energy is controlled. The person in charge shall ensure that each person understands the hazards to which they are exposed and the safety-related work practices they are to use.

10.4

All complex lockout/tagout plans identify the method to account for all persons who might be exposed to electrical hazards in the course of the lockout/tagout.

Select which of the following methods is to be used:

(1) Each individual will install his or her own personal lockout or tagout device.
(2) The person in charge shall lock his/her key in a “lock box”
(3) The person in charge shall maintain a sign in/out log for all personnel entering the area.
(4) Another equally effective methodology.

10.5

The person in charge can install locks/tags, or direct their installation on behalf of other employees

10.6

The person in charge can remove locks/tags or direct their removal on behalf of other employees, only after all personnel are accounted for and ensured to be clear of potential electrical hazards.

10.7

Where the complex lockout (tagout) is continued on successive shifts, the person in charge shall identify the method for transfer of the lockout and of communication with all employees.

11.0 Discipline.

11.1

Knowingly violating this procedure will result in _____ (state disciplinary actions that will be taken).

11.2

Knowingly operating a disconnecting means with an installed lockout device (tagout device) will result in _____ (state disciplinary actions to be taken).

12.0 Equipment.

Copyright NFPA
Locks shall be ____ (state type and model of selected locks).

Tags shall be ____ (state type and model to be used).

Voltage detecting device(s) to be used shall be ____ (state type and model).

13.0 Review.

This procedure was last reviewed on _____, and is scheduled to be reviewed again on _____ _____ (not more than one year from the last review).

14.0 Lockout/Tagout Training.

Recommended training can include, but is not limited to, the following:

(1) Recognizing lockout/tagout devices
(2) Installing lockout/tagout devices
(3) Duty of employer in writing procedures
(4) Duty of employee in executing procedures
(5) Duty of person-in-charge
(6) Authorized and unauthorized removal of locks/tags
(7) Enforcing execution of lockout/tagout procedures
(8) Individual employee control of energy
(9) Simple lockout/tagout
(10) Complex lockout/tagout
(11) Using single line and diagrammatic drawings to identify sources of energy
(12) Use of tags and warning signs
(13) Release of stored energy
(14) Personnel accounting methods
(15) Grounding needs/requirements
(16) Safe use of voltage detecting instruments

Annex H. Simplified, Two-Category, Flame-Resistant (FR) Clothing System

Copyright NFPA
This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

H.1 Use of Simplified Approach.

The use of Table H.1 is suggested as a simplified approach to assure adequate PPE for electrical workers within facilities with large and diverse electrical systems. The clothing listed in Table H.1 fulfills the minimum FR clothing requirements of Table 130.7(C)(9)(a) and Table 130.7(C)(10). The clothing systems listed in this table should be used with the other PPE appropriate for the Hazard/Risk Category. See Table 130.7(C)(10).

<table>
<thead>
<tr>
<th>Table H.1 Simplified, Two-Category, Flame-Resistant Clothing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothing</td>
</tr>
<tr>
<td>Everyday Work Clothing</td>
</tr>
<tr>
<td>FR long-sleeve shirt (minimum arc rating of 4) worn over an untreated cotton T-shirt with FR pants (minimum arc rating of 8)</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>FR coveralls (minimum arc rating of 4) worn over an untreated cotton T-shirt (or an untreated natural fiber long-sleeve shirt) with untreated natural fiber pants</td>
</tr>
<tr>
<td>Electrical “Switching” Clothing</td>
</tr>
<tr>
<td>Multilayer FR flash jacket and FR bib overalls worn over either FR coveralls (minimum arc rating of 4) or FR long-sleeve shirt and FR pants (minimum arc rating of 4), worn over untreated natural fiber long-sleeve shirt and pants, worn over an untreated cotton T-shirt</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Insulated FR coveralls (with a minimum arc rating of 25, independent of other layers) worn over untreated natural fiber long-sleeve shirt with untreated denim cotton blue jeans (“regular weight,” minimum 12 oz/yd² fabric weight), worn over an untreated cotton T-shirt</td>
</tr>
</tbody>
</table>
| *Note other PPE required for the specific tasks listed in Tables 130.7(C)(9)(a) and 130.7(C)(10), which include arc-rated face shields or flash suit hoods, FR hardhat liners, safety glasses or safety goggles, hard hat, hearing protection, leather gloves, voltage-rated gloves, and voltage-rated tools.

Annex I Job Briefing and Planning Checklist

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

Copyright NFPA
Figure 1.1 illustrates considerations for a Job Briefing and Planning Checklist.
Identify
- The hazards
- The voltage levels involved
- Skills required
- Any "foreign" (secondary source) voltage source
- Any unusual work conditions
- Number of people needed to do the job

Ask
- Can the equipment be de-energized?
- Are backfeeds of the circuits to be worked on possible?

Check
- Job plans
- Single-line diagrams and vendor prints
- Status board
- Information on plant and vendor resources is up to date
- Safety procedures
- Vendor information
- Individuals are familiar with the facility

Know
- What the job is
- Who else needs to know—Communicate!

Think
- About the unexpected event... What if?
- Lock — Tag — Test — Try
- Test for voltage — FIRST
- Use the right tools and equipment, including PPE

Prepare for an emergency
- Is the standby person CPR trained?
- Is the required emergency equipment available?
 Where is it?
- Where is the nearest telephone?
- Where is the fire alarm?
 Is confined space rescue available?
- What is the exact work location?
- How is the equipment shut off in an emergency?
- Are the emergency telephone numbers known?
- Where is the fire extinguisher?
- Are radio communications available?
Figure 1.1 Job Briefing and Planning Checklist.

Annex J Energized Electrical Work Permit

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

J.1

Figure J.1 illustrates considerations for an Energized Electrical Work Permit.
ENERGIZED ELECTRICAL WORK PERMIT

PART I: TO BE COMPLETED BY THE REQUESTER:

1. Description of circuit/equipment/job location: ________________________________

2. Description of work to be done: __

3. Justification of why the circuit/equipment cannot be de-energized or the work deferred until the next scheduled outage:

Requester/Title: __________________________ Date: _______________

PART II: TO BE COMPLETED BY THE ELECTRICALLY QUALIFIED PERSONS DOING THE WORK:

1. Detailed job description procedure to be used in performing the above detailed work: □

2. Description of the Safe Work Practices to be employed: ________________________ □

3. Results of the Shock Hazard Analysis: □

4. Determination of Shock Protection Boundaries: □

5. Results of the Flash Hazard Analysis: □

6. Determination of the Flash Protection Boundary: □

7. Necessary personal protective equipment to safely perform the assigned task: __________________________ □

8. Means employed to restrict the access of unqualified persons from the work area: __________________________ □

9. Evidence of completion of a Job Briefing including discussion of any job-related hazards: __________________________ □

10. Do you agree the above described work can be done safely? □ Yes □ No (If no, return to requester)

Electrically Qualified Person(s): __________________________ Date: _______________

Electrically Qualified Person(s): __________________________ Date: _______________

PART III: APPROVAL(S) TO PERFORM THE WORK WHILE ELECTRICALLY ENERGIZED:

Manufacturing Manager: __________________________

Maintenance/Engineering Manager: __________________________

Safety Manager: __________________________

Electrically Knowledgeable Person: __________________________

General Manager: __________________________ Date: _______________

Note: Once the work is complete, forward this form to the site Safety Department for review and retention.

© 2004 National Fire Protection Association

NFPA 70E (2.1 of 1)

Copyright NFPA
Annex K General Categories of Electrical Hazards

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

K.1 General Categories.
There are three general categories of electrical hazards: electrical shock, arc-flash, and arc-blast.

K.2 Electric Shock.
Approximately 30,000 nonfatal electrical shock accidents occur each year. The National Safety Council estimates that about 1000 fatalities each year are due to electrocution, more than half of them while servicing energized systems of less than 600 volts.

Electrocution is the fourth leading cause of industrial fatalities, after traffic, homicide, and construction accidents. The current required to light a 7½ watt, 120 volt lamp, if passed across the chest, is enough to cause a fatality. The most damaging paths through the body are through the lungs, heart, and brain.

K.3 Arc-Flash.
When an electric current passes through air between ungrounded conductors or between ungrounded conductors and grounded conductors, the temperatures can reach 35,000°F. Exposure to these extreme temperatures both burns the skin directly and causes ignition of clothing, which adds to the burn injury. The majority of hospital admissions due to electrical accidents are from arc-flash burns, not from shocks. Each year more than 2,000 people are admitted to burn centers with severe arc-flash burns. Arc-flashes can and do kill at distances of 10 ft.

K.4 Arc-Blast.
The tremendous temperatures of the arc cause the explosive expansion of both the surrounding air and the metal in the arc path. For example, copper expands by a factor of 67,000 times when it turns from a solid to a vapor. The danger associated with this expansion is one of high pressures, sound, and shrapnel. The high pressures can easily exceed hundreds or even thousands of pounds per square foot, knocking workers off ladders, rupturing eardrums, and collapsing lungs. The sounds associated with these pressures can exceed 160 dB. Finally, material and molten metal is expelled away from the arc at speeds exceeding 700 miles per hour, fast enough for shrapnel to completely penetrate the human body.

Annex L Typical Application of Safeguards in the Cell Line Working Zone

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.
L.1 Application of Safeguards.

This section permits a typical application of safeguards in electrolytic areas where hazardous electrical conditions exist. Take, for example, an employee working on an energized cell. The employee uses manual contact to make adjustments and repairs. Consequently, the exposed energized cell and grounded metal floor could present a hazardous electrical condition. Safeguards for this employee can be provided in several ways:

(1) Protective boots can be worn that isolate the employee's feet from the floor and that provide a safeguard from the hazardous electrical condition.

(2) Protective gloves can be worn that isolate the employee's hands from the energized cell and that provide a safeguard.

(3) If the work task causes severe deterioration, wear, or damage to personal protective equipment, the employee might have to wear both protective gloves and boots.

(4) A permanent or temporary insulating surface can be provided for the employee to stand on to provide a safeguard.

(5) The design of the installation can be modified to provide a conductive surface for the employee to stand on. If the conductive surface is bonded to the cell, the hazardous electrical condition will be removed and a safeguard will be provided by voltage equalization.

(6) Safe work practices can provide safeguards. If protective boots are worn, the employee should not make long reaches over energized (or grounded) surfaces such that his or her elbow bypasses the safeguard. If such movements are required, protective sleeves, protective mats, or special tools should be utilized. Training on the nature of hazardous electrical conditions and proper use and condition of safeguards is in itself a safeguard.

(7) The energized cell can be temporarily bonded to ground to remove the hazardous electrical condition.

L.2 Electrical Power Receptacles.

Power supply circuits and receptacles in the cell line area for portable electric equipment should meet the requirements of 430.8(F). However, it is recommended that receptacles for portable electric equipment not be installed in electrolytic cell areas and that only pneumatic powered portable tools and equipment be used.