Hazardous Materials: Managing the Incident

CHAPTER 8

Selecting Personal Protective Clothing and Equipment

Learning Objectives Overview

- Knowledge Objectives
- Skills Objectives

Introduction

- Tactical objective must be determined before selection of personal protective clothing
- Responders must be trained in the application, limitations, and use of PPE.
- Engineering controls and the use of safe work practices and administrative controls also provide protection from hazardous materials.

Basic Principles (1 of 2)

- CPC evaluation concerns should focus upon the following:
 - Chemical resistance of the garment
 - Integrity of the entire protective clothing ensemble
 - The tasks to be performed

Basic Principles (2 of 2)

- Key terms in evaluating chemical barriers:
 - Degradation
 - Penetration
 - Permeation

Permeation Theory (1 of 2)

- The process of chemical permeation through an impervious barrier is a three-step process consisting of the following:
 - Adsorption of the chemical
 - Diffusion of the chemical
 - Desorption of the chemical

Permeation Theory (2 of 2)

- Chemical permeation rates are a function of many factors, including the following:
 - Temperature
 - Thickness
 - The unknown effects of chemical mixtures upon chemical resistance
 - Previous exposures

Protective Clothing Materials

- Parameters that should be considered when evaluating and choosing CPC:
 - Chemical resistance
 - Flammability
 - Strength and durability
 - Overall integrity
 - Flexibility
 - Temperature characteristics
 - Shelf life
 - Decontamination and disposal

Categories of Chemical Protective Clothing

- Protective clothing materials can be classified by use into two broad categories:
 - Limited-use garments
 - Reusable garments

Chemical Barrier and Initial Selection Considerations (1 of 3)

- No single protective clothing material offers total chemical protection.
- Selection should be based on a hazard assessment of chemicals involved.
- User must rely on the manufacturer's representation.
- Evaluate all suit components and their construction materials.

Chemical Barrier and Initial Selection Considerations (2 of 3)

- Chemical resistance data is described in terms of either:
 - Chemical permeation/breakthrough times and rates
 - Cumulative permeation for a given test duration
 - Pass/fail chemical penetration testing results

Chemical Barrier and Initial Selection Considerations (3 of 3)

- Guidelines for evaluating chemical barrier recommendations:
 - Recommendations should come from documentation published by the vendor.
 - Determine the basis of chemical barrier recommendations.
 - Degradation recommendations based upon immersion testing data may be quite old.
 - Testing criteria and descriptions defining key words may not be documented.

Respiratory Protection

- The respiratory system is the most direct and critical exposure route.
- Inhalation is the most common exposure route and is often the most damaging.
- Material does not have to be a gas in order to be inhaled.

Respiratory Protection

Respiratory protection selection factors:

- What is the physical form of the contaminant (i.e., solid, liquid, or gas)?
- Has the contaminant been identified?
- Are concentrations known or unknown?
- What is the purpose of response operations?

Respiratory Protection

- What will be the duration of response operations?
- What is the operating environment and operating conditions (e.g., indoors, outdoors, heat, cold, precipitation, etc.)?
- What type and level of skin protection will be required?

Air Purification Devices (1 of 4)

 Air purification devices are respirators that remove particulate matter, gases, or vapors from the ambient air before inhalation.

Air Purification Devices (2 of 4)

DuPont® Personal Protection

Courtesy of Chris Hawley

Two basic types: – Air purification respirators (APRs) – Powered-air purification respirators (PAPRs)

Air Purification Devices (3 of 4)

- Operational considerations when using APRs and PAPRs include the following:
 - Qualified personnel have first monitored the environment.
 - Cannot be used in IDLH environments or in oxygendeficient atmospheres
 - Should not be used in the presence or potential presence of unidentified contaminants
 - Respiratory protection can be downgraded.

Air Purification Devices (4 of 4)

- Operational considerations when using APRs and PAPRs include the following:
 - May present logistical problems for storage and maintenance
 - Have a limited-protection duration
 - APRs and PAPRs only protect against specific chemicals and only to specific concentrations.
 - Individuals must meet the fit testing and medical requirements.

Atmosphere Supplying Devices

• There are two basic types:

- Self-contained breathing apparatus (SCBA)
- Supplied air respirator (SAR), which supplies air from a source away from the scene connected to the user by an airline hose
- Provide the highest available level of protection

Self-Contained Breathing Apparatus (1 of 3)

- There are two basic types of SCBA:
 - Open-circuit
 - Closed-circuit
- Open circuit SCBAs use a compressed air cylinder to supply fresh air.
- Closed-circuit SCBAs recycle exhaled air while replenishing the consumed oxygen.

Self-Contained Breathing Apparatus (2 of 3)

- CBRN-compliant SCBAs must meet the performance requirements of NFPA 1981 and NIOSH CBRN requirements.
- Advantages of using SCBA:
 - Readily available
 - Most responders are proficient in their use.
 - Provide the highest level of respiratory protection

Self-Contained Breathing Apparatus (3 of 3)

- Operational considerations when using SCBA:
 - Atmosphere-supplying units are required for initial response operations.
 - Duration of the operation is 30, 45, or 60 minutes.
 - Depending on the type of cylinder, certain chemicals may attack the outer shell of an air cylinder.

Supplied Air Respirators (1 of 3)

 SARs may be used when extended working times are required.

Supplied Air Respirators (2 of 3)

- Components of a SAR include:
 - Source of breathing air
 - Airline hose
 - Positive-pressure respirator
 - Emergency air supply, such as a small escape cylinder

Supplied Air Respirators (3 of 3)

- Operational considerations when using SARs include the following:
 - Atmosphere-supplying units are required for initial response operations.
 - NIOSH limits hose length to 300 feet.
 - IDLH or oxygen-deficient atmosphere requires a emergency air supply.
 - Airline hose may impair user mobility.
 - Airline hose is vulnerable to damage, chemical contamination, and degradation.

Levels of Protection

- There is no one type of PPE that satisfies our protection needs under all conditions.
- Three basic types of protective clothing:
 - Structural firefighting clothing
 - Chemical protective clothing
 - High-temperature protective clothing

Structural Firefighting Clothing (1 of 4)

- Normally not the first PPE choice for most hazmat response scenarios
- SFC includes:
 - Helmet
 - SCBA/PASS
 - Turnout coat and pants
 - Gloves and boots
 - Hood made of a fireresistant material

Structural Firefighting Clothing (2 of 4)

 The ensemble should meet NFPA 1971 requirements.

Structural Firefighting Clothing (3 of 4)

- SFC may be used when the following conditions are met:
 - Contact with splashes of extremely hazardous materials is unlikely.
 - Total atmospheric concentrations do not contain high levels of chemicals toxic to the skin.
- Exposed garments must have chemical contamination removed or lowered to a safe level.

Structural Firefighting Clothing (4 of 4)

Body protection components

- Manufacturers of Goretex[™] recommend that their fabric not be worn in any type of chemical atmosphere.
- SFC is not designed to offer chemical protection!
- Respiratory protection
 - SCBA is the minimum level of respiratory protection.

Liquid Chemical Splash Protective Clothing (1 of 3)

- May be used under the following conditions:
 - Vapors or gases present are not suspected of containing high concentrations of chemicals that are harmful to or can be absorbed by the skin.
 - Highly unlikely that the user will be exposed to high concentrations of vapors, gases, or liquid chemicals that will affect any exposed skin areas.

Liquid Chemical Splash Protective Clothing (2 of 3)

- May be used under the following conditions:
 - Operations will not be conducted in a flammable atmosphere.
- Wearing a flame-resistant garment underneath flammable chemical protective outer garments does not provide protection against heat and flame exposure.

Liquid Chemical Splash Protective Clothing (3 of 3)

Skin and Body Protection (1 of 5)

Several common types include the following:

- Single-piece suits
- Two-piece suits
- CPC seams may be:
 - Sewn
 - Bound
 - Thermally welded
 - Taped
 - Double taped

Skin and Body Protection (2 of 5)

Head protection

- Hard hat, helmet, or hood
- Hard hat protection is recommended when using a hood or encapsulating suit.
- Some manufacturers offer a respirator-fit hood.
Skin and Body Protection (3 of 5)

Gloves

- For maximum protection, over-gloving and doublegloving should be used.
 - Double-gloving involves the use of surgical gloves under a work glove.
 - Over-gloving is the wearing of a second glove over the work glove for additional chemical and abrasion protection during lifting and moving operations.

Skin and Body Protection (4 of 5)

Footwear and shoe covers

- May be chemical boots, separate shoe covers, or booties
- Boots should provide both chemical and mechanical protection.
- Some chemical protective suits have attached boots specifically designed for hazmat response operations.

Skin and Body Protection (5 of 5)

Aprons and body coverings

- Designed for protection against spills and splashes that occur when physically handling chemicals and other hazardous materials
- Primarily used for routine chemical handling operations

 May also be worn by responders while handling samples and performing hazardous categorization (HazCat) tests

Clothing (1 of 5)

- Chemical vapor protective clothing (i.e., EPA Level A clothing) provides full-body protection with vapor-tight integrity.
- Provides a gas-tight envelope around the wearer

Chemical Vapor Protective Clothing (2 of 5)

- Should be used when the following conditions exist:
 - Extremely hazardous substances are known or suspected to be present, and skin contact is possible.
 - There is potential contact with substances that harm or destroy skin.

Chemical Vapor Protective Clothing (3 of 5)

- Should be used when anticipated operations involve:
 - A potential for splash or exposure to vapors, gases, or particulates capable of being absorbed through the skin
 - Unknown or unidentified substances and the scenario dictates that vapor-tight skin protection is required

Clothing (4 of 5)

- Skin and body protection
 - Manufactured in several configurations
 - Most common is where the SCBA is worn underneath the ensemble
 - Easily identified by its "humpback"
 - Expanded-back design incorporates an airline hose bulkhead connection onto the suit if a supplied air respirator will be used

Chemical Vapor Protective Clothing (5 of 5)

Skin and body protection

- Face piece serves as the primary barrier for respiratory protection against chemical permeation.
- All components of the ensemble must provide an equivalent level of protection.
- Visibility through faceshield will be critical.
- A chemical vapor suit is only as strong as its weakest link.

Vapor Suit Attachments and Accessories (1 of 8)

- Gloves
 - Permanently attached or detachable
 - Permanently attached gloves offer integral, vaportight wrist protection
 - Detachable permits the user to select the glove material.
 - When detachable gloves are changed, the suit should undergo a pressure test.
 - Gloves must match the chemical resistance of the primary suit material.

Vapor Suit Attachments and Accessories (2 of 8)

- Can be either an integral part of the suit or a separate item
- Most chemical vapor suits incorporate an integral sock boot or "bootie" design constructed of the same material as the suit.
- Boots used for emergency response purposes should have both steel toe and shank protection.

Vapor Suit Attachments and Accessories (3 of 8)

- Suit fit and closure assemblies
 - Mobility is sacrificed whenever a chemical vapor suit is worn.
 - All chemical vapor suits are sealed by a closure assembly.
 - Emergencies may arise when the suit integrity is compromised or when the SCBA malfunctions.
 - Beware of the initial impulse to immediately get out of the suit.

Vapor Suit Attachments and Accessories (4 of 8)

- Overgarments
 - Overgarments may provide additional physical protection and thermal protection.
 - Can also have a negative impact upon:
 - Visibility (i.e., user may have to look through two or three faceshields or visors)
 - Mobility
 - Manual dexterity
 - Flash overgarments are not entry or proximity clothing.

Vapor Suit Attachments and Accessories (5 of 8)

- Undergarments
 - Personal clothing worn by hazmat responders can influence heat stress potential, as well as the ability of the user to effectively operate within a hostile environment.
 - Fire retardant coveralls worn underneath CPC that melts or burns offers little-to-no added protection.

Vapor Suit Attachments and Accessories (6 of 8)

- Both liquid chemical splash and vapor protective clothing retain body heat and moisture.
- Heat stress becomes a concern even in moderate ambient temperatures.
- Individuals should be in good health and physical condition.

Vapor Suit Attachments and Accessories (7 of 8)

- Communications
 - Verbal, person-to-person communications are virtually impossible.
 - Radio communications are a necessity.
 - Other alternatives include:
 - Voice amplifiers
 - Hand signals
 - Large flash cards

Vapor Suit Attachments and Accessories (8 of 8)

- Communications
 - Communications systems include:
 - Radio headsets
 - Ear, mouth, and bone microphones
 - Voice amplifiers
 - Identification methods can include:
 - Different colored suits
 - Large numbers attached to the suit
 - Color-coded (or numbered) traffic vests
 - Reflective tape
 - Cyalume® lightsticks

High-Temperature Protective Clothing

- Hazmat responders may be required to operate in high-temperature environments.
- Aluminized fabric PPE may be necessary.
- Three forms thermal energy:
 - Ambient heat
 - Conductive heat
 - Radiant heat

SCBA should always be considered part of the ensemble.

Types of High-Temperature Clothing (1 of 2)

- Two types of high-temperature protective clothing exist.
 - Proximity suits are designed for exposures of short duration and close proximity to flame and radiant heat.
 - Fire entry suits offer complete, effective protection for short-duration entry into a total flame environment.

Types of High-Temperature Clothing (2 of 2)

The two most common examples of high temperature protective clothing are proximity suits and fire entry suits.

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

Tying the System Together

Operational considerations

- A systems perspective is used to select and use specialized PPE at a hazmat/WMD emergency.
- Four key factors are evaluated:
 - The hostile environment
 - The tasks to be performed
 - The type of protective clothing required
 - The capabilities of the user/wearer

Hostile Environment

- Questions that must be considered:
 - What material(s) is/are involved?
 - What is the physical state of the substance?
 - What are the hazards of the substance?
 - What is the result of contact to the skin?
 - What physical hazards are present?
 - What is the ambient temperature and weather conditions?

Tasks to be Performed

 Given the tactical response objectives being implemented, what is the potential for exposure to the substances involved, including the level and duration of exposure?

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

Type of Protective Clothing Required

- Strategic goals and tactical response objectives will determine the level of protective clothing required.
- The decision must take into account the level of risk associated with the overall response.

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

- All responders have personal strengths and weaknesses.
- Unrealistic expectations of what CPC can and cannot do will significantly increase the level of risk.

Capabilities of the User/Wearer (2 of 6)

- All responders will be affected by two types of stressors:
 - Physical stressors
 - Psychological stressors

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

- Operational issues and safety procedures:
 - The selection, maintenance, and use of protective clothing must be an integral part of an overall PPE and safety program.
 - Chemical protection and thermal protection are mutually exclusive.
 - Decon should be established prior to entry operations into the hot zone.

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

- Operational issues and safety procedures:
 - Always minimize direct contact with any chemicals.
 - Depending upon the ambient temperature and humidity, fogging may occur inside the face piece of a chemical vapor suit.
 - Ensure entry and backup crews have equivalent levels of protection.

- Operational issues and safety procedures:
 - "Two-In/Two-out" may work in an open-air environment, but it won't your operating inside a structure.
 - Entry personnel must maintain their situational awareness at all times.
 - Communications is a critical element in entry operations.

- Operational issues and safety procedures:
 - Conduct pre-entry briefing prior to entry.
 - Any plan to allow the same entry personnel to reenter requires approval.
 - Support personnel are always needed to assist entry and backup crews in donning and doffing protective clothing.

Emergency Procedures (1 of 2)

- Organizations should develop procedures to address in-suite emergencies.
 - Loss of air supply
 - Loss of suit integrity
 - Loss of communications
 - Buddy down in the hot zone
 - Suit overpressurization
 - Reduced egress scenarios

Emergency Procedures (2 of 2)

Emergency procedures while wearing chemical vapor protective clothing

Donning, Doffing, and Support Considerations

- Time-consuming process
- Based on manufacturer's instructions
- Donning and doffing area should be adjacent to each other.
- A pre-entry safety briefing should be conducted prior to donning operations.

Donning and Doffing Chemical Protective Clothing

- Responders should review all donning and doffing procedures.
 - Level A
 - Level B
 - Level C
 - Level D

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

Training Considerations

- System must include organized and documented training.
- Both classroom and hands-on training is essential.
- System should require regular responder qualification on all suit types.
- Training suites should be used to minimize damage to front-line equipment.

Inspection and Maintenance Procedures (1 of 3)

- Preventive maintenance and documentation are integral elements of a PPE program.
- Documentation should indicate:
 - Date of purchase
 - Manufacturer and vendor
 - Serial number
 - Material of construction
 - Any other unique or specific information

Inspection and Maintenance Procedures (2 of 3)

- A logbook should be established.
- Inspection benchmarks
 - Upon receipt from the manufacturer or vendor
 - Periodic inspections after each use
 - Whenever questions arise regarding selected protective equipment or when problems with similar equipment arise
Inspection and Maintenance Procedures (3 of 3)

- Both chemical vapor and splash protective clothing should also undergo visual inspections for any signs of the following:
 - Degradation
 - Stress cracks
 - Other damage

All protective clothing must be stored properly to prevent damage.

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company I www.jblearning.com

 Personal protective clothing and equipment are critical to the success of an organization's hazardous materials response program.

Summary (2 of 4)

- An effective and comprehensive personal protective clothing program should address six fundamental elements:
 - Hazard identification
 - PPE selection and use
 - Medical monitoring
 - Training
 - Inspection
 - Maintenance

Summary (3 of 4)

- Chemicals may attack and pass through protective clothing materials via three methods:
 - Degradation
 - Penetration
 - Permeation
- CPC materials are classified as either limiteduse (disposable) garments or reusable garments.

Summary (4 of 4)

 Remember that the longer the breakthrough time or the lower the cumulative permeation value, the better the level of protection.